
BASICO09

PROGRAMMING LARGUAGZ

REFPERENCE MANUAL

Copyright 1980, 1984 Microware Systems Corporation. All Rights Reserved

This document and the software it describes are copyrighted products of

Microware Systems .Corporation. Reproduction by any means is strictly

prohibited except by prior written permission from Microware Systems

Corporation.

The information contained herein is believed to be accurate as of the date

of publication, however Microware will not be liable for any damages,

including indirect or consequential, resulting from reliance upon the
software or this documentation.

Revision H, January 1984

Microware System Corporation

P.0O. Box 4865

Des Moines, Iowa 50304 U.S.A.

BASIC09 REFERENCE MANUAL

TABLE OF CONTENTS

Introduction

Comments on Bas icOg ® ® & 8 6 & ¢ 0 & O O S 0 SO 0 SO G e e O s 8 s 9 e o

History of BasiCO9 e® @4 4 0 & 49 0 ¢ 9 9 S S S S O S O T e S e T OO P

Introduction to Basic09 Programming

What isS @ Program? ...eeeessscecccossscacscancnse

A Simple BasSiC PrOQraAM .eceececvceccccsccsasaccssnas

Basic Programming Techniques:

Loops and Arithmetic .seviieseecccoccacscnnocas

Listing Procedure NamMeS ..cceescecscsnccscanccnas

Regquesting More MEMOIY scceececsccascscssncsscans

Storing and Recalling PrOQraMS ..cececccecccscsces
How to Print Program Listings .eeeeececcccacscoae

Basic09's FOUZ MOGES tveseecvereccsrsoncsscacncnns

More About the WOrkSpace ..eeececesccoscacensance

System Mode

System Mode Commands ® @ & & 0 6 ¢ & O 0 O 0 OO 8O SO O S OB

Edit Mode .

- Overview of Edit COMMANAS .ccoccsnsccsccoscssacns

How the EQitor WOIKS ciccecrrcccecsscasccsnescens

Line-Number Oriented Editing ceeececrcccercsconces

String Oriented Editing .eeececesccsccscccsscnsnne

Detziled Edit COMMANAS sececscscccsssasasssoscscne

Execution Mode

Running Programs ® 6 08 6 6 5 0 0 0 5 % ¢ s SO S0 S O8G0 e B e aa0n

Execution Mode: Technically SpeakiNg .eeccecccess

Debug Mode

Overview of Debug MOde .t.eeveccoccsscoccsscsocons

Debug Mode COMMANAS teeeeavssccsssscessacssccnaos

Debugging TecChRiQUES c.cevesccscscsssovscsesosscas

Debug Mode as a Desk Calculator ..ceececccacoosce

Data Types, Variables, and Data Structures

Why Are There Different Data Typesceveeecans

Data StrIUCLUIES .ceevecsccccccscascccacssscnccnss

AtomicC Data TYPES cuveertsecesscsacscscscncsosasos

CONStENtS seceeecccccsorsasnssoosnscsnsoscscscassanacaes

VariablesS .eciesreececseosesnossnssassscsosscssannsa

ParamEterS ® 6 06 88 8 0 0 0 E 0 G QSO L OGS S PO PO 0N CE OSSO IS ce e

Arrays ® 8 2 0 6 0 % S AT E P S L O P SRS e S ES R0 0N OQETOeCe e RCSES

Complex Data Types ® 4 6 6 00 0 80 08¢0 00 0P EE VO COIOITOECETISIE

Expressions, Operators, and Functions

Expressions ® & 0 0 & O ¢ 5 8 4 0 &P 8 G P OO PO E O T O P E T O G O E 00" e e

Operators ® @ & ¢ 5 0 & 0 ¢ 0 8PS O 0 & B OO OSBGOSO S S O E ON O R e

Functions @ ® 8 8 9 @ 8 € T P 00 LS E S S AL AN TE OO0 S O G EESIOES

Page 0-1

NNNNP})NNSR WO~B-4
w) —

o

[S-YL bWN
1 —

NNN
1

0O~J~JUTN)2
oo0 1 LoSN

BASIC09 REFERERCE MARUAL

TABLEOF CONTERTS - CORTIRUED

Program Statements and Structure

Program structure ® ® & ® 6 8 & 5 5 O 8 OO OSSP PP S S SS90 s e

Line Numbers

Assignment Statements

Control Statements

® 0 0 0 68 0 P W ST O L OO OSSP eSSBS OO ELSES

S 5 6 ¥ 0 % 0 06008 S 00 SE N Ss O S0e

Parameter Passing ® ® 060 8 8 ¢ & 0 ¢ 98 O S L9 SO S e S OO SN a0

Calling External ProcedUreS ..c.cveesansscccccccas

Declarations ® 6 & 0 9 00 8 9 00 8 TS Q PO LGOS OCOCET TIPS

Input and Output Functions ..ccecevccccccscsccccccccsscs

Program Optimization ® © ¢ 0 2 0 00060 0 60008 S e S E LSS0 SsO S ssSe

Appendix

Appendix

Appendix

Appendix
h

sppendix

A

B

C

D

E

Sample PrOgLaGmS ceeeeecaccosssassscasacsce

Quick Reference SUMMAIY eeecenrcccsocccses

Basicl09 Error CodesS ceeeveesessccsscccanse

Runb

Index

e o0 080090

s o6 000000

® 9 0 0 0080 50 00000800ELELs s

® © 8 88 3 05 05000 SE e 0es s

Page 0-2

BASIC09 REFERENCE MARUAL

INTRODUCTIONR

BASIC09 is an enhanced and structured BASIC language programming

system specially c¢reated for the 6809 Advanced Microprocessor. 1In

addition to the standard BASIC language statements and functions, BASICO9

includes many of the most wuseful elements of the PASCAL programming

language so that programs can be modular, well-structured and use

sophisticated data structures. It also permits full accessto almost all

of the 0S-9 Operating System commands and functions so it can be used as

a systems programming language. These features make BASIC09 an ideal

language for many applications: scientific, business, industrial control,

education, and more.

BASIC09 is wunusual in that it is an Interactive Compiler that has

the best of both kinds of language system: it gives the fast execution

speed typical of compiler languages plus the ease of use and memory space

efficiency typical of interpreter languages. BASICO09 is truly a

complete PROGRAMMING SYSTEM that includes a powerful text editor,

multipass compiler, run-time interpreter,. high-level interactive

debugger, and a system executive. Each of these components was carefully

integrated so the user "sees" a friendly, highly interactive programming

resource that provides all the tools and helpful "extra" facilities

needed for fast, accurate creation and testing of structured programs.

BASIC0S FEATURES

* Structured Recursive BASIC with PASCAL-type Enhancements

Allows Multlple, Independent, Named, Procedures

- Procedure Call by Name with Parameters

- Multi-character, upper or lower case identifiers

- Variables and Line Numbers Local to Procedures.

~ Line Numbers Optional

- Automatic Linkage to ROM or RAM "Library" Procedures
- PACK Compiler Command Compacts Program and Provides Security

_ - PRIRT USIRG with FORTRAN-like Format Specifications

* Extended Data Structures

- 5 Basic Data Types: BYTE, INTEGER, REAL, BOOLEAN and STRING.

- One, Two, or Three-Dimensional Arrays

- User-Defined Complex Structures and Data Types

* Extended Control Structures (with Unique Closure Elements):
- IPF...THEN...[ELSE...] ENDIF

- PFOR...TO...[STEP]...REXT

- REPEAT...URTIL...

- WHILE...DO...ERDWHILE

- LOOP,...ENDLOOP

- EXITIP...TEEN,..ENDEXIT

* powerful Interactive Debugging and Editing Features

- Integral Full-Feature Text Editor

- Syntax Error Check upon Line Entry and Procedure Compile

- Trace Mode Reproduces Original Source Statements

Renumber Command for Line Numbered Procedures

* Eigh-Speed, High-Accuracy Math

Page 1-1

BASIC09 REFERENCE MANUAL

- 9-Decimal-Digit 40-Bit-Binary Floating Point

- Full Set of Transcendentals (SIN, ASN, ACS, LOG, etc.)

THE HISTORY OF BASICOS

BASIC09 was conceived in 1978 as a high-performance programming

language to demonstrate the capabilities of the 6809 microprocessor to

efficiently run high-level languages. BASIC09 was developed at the same

time as the 6809 under the auspices of the architects of the 6809. The

development project covered almost two years, and incorporated the

results of research in such areas as interactive compilation, fast

floating point arithmetic algorithms, storage management, high-level

symbolic debugging and structured languade design. These innovations

give BASICO09 its speed, power and unique flavor.

BASIC09 was commissioned by Motorola, Inc., Austin, Texas, and

developed by Microware Systems Corporation, Des Moines, Iowa. Principal

designers of BASIC09 were Larry Crane, Robert Doggett, Ken Kaplan, and

Terry Ritter. The first release was in February, 1980.

Excellent feedback, thoughtful suggestions, and carefully documented

bug reports from BASIC09 users all over the world have been invaluable to

the designers in their efforts to achieve the degree of sophistication

and reliability BASIC09 has today.

Page 1-2

BASIC09 REFPERENCE MARUAL

Introduction to BASIC09 Programming

AN INTRODUCTIOR TO BASICO9

This section is intended for persons who have not previously written

computer programs. If you are familiar with programming in generalor

BASIC programming specifically, this section can give you a "feel" for

the BASICOS interactive environment.

WEAT IS A PROGRAM?

A computer works something 1like a pocket -calculator, With a

calculator, you push a button, some calculation occurs, and the result is

displayed. On some calculators you can write a program which is just a

list of the buttons you want pushed, in the order you want them pushed,
which is very similar to a computer program, but most computer languages

use command names instead of buttons.

To get results from a computer, you must first put into the computer

the 1list of commands you want executed in the order you want them
executed., Each command will mean "do this thing" or "do that thing", but
the computer only has certain commands which it will understand. 2a

computer can do things 1like "add" or "save the result into a memory”.
Typing "get me a taco" to a computer won't get it; similarly, on a

calculator you can't push buttons which aren't there. After you have
stored a 1list of commands into the computer, you can tell it to perform

those operations. This is like actually pushing the buttons on a hand
calculator. Then, if you remembered to have the computer display your

results, you get to see them. Generally, a computer does not
automatically display results like a hand calculator. More calculations
occur in a computer than in a «calculator, and displaying all these
results would simply be overwhelming. :

You enter a program into a computer by using the computer itself as
a "text editor"TM to store the commands you type in. Some editors allow

you to enter. any text you want. Other editors will only store valid
computer commands. Even if the computer does store all the text you type

in, it can only execute those commands it knows. If, during program
execution, BASIC09 finds a word which does not correspond to a command,
it will probably stop and print out an "error message". Other editors
check each command as you enter it (usually after the carriage-return

ending each 1line) and print error messages immediately for invalid
commands. After typing in your 1list of commands, there are ways to

display that 1list, to modify the commands you have typed in, and to

insert others., But simply entering a computer program does not get

results any more than thinking which buttons to push will get results on
a calculator. You store your program by typing it into a computer, but
no results are available until after you start the program running.

Even though programming is conceptually simple, it is easy to

nisspell commands which BASIC09 will not interpret correctly. Unlike

humans, BASIC09 does not infer anything: Every command must be perfectly

Page 2-1

BASICOS REFEREKCE MARUAL

Introduction to BASIC09 Programming

spelled and punctuated or it is wrong. Even after spelling errors are
eliminated, it is likely that the sequence of commands you have entered

will not do the job you wanted it to do. The meaning of the program to
BASICO09 is often guite different than was intended by the programmer,but

good intentions just don't push the right buttons. After you get the

program to run without obvious error, you must test the program with

‘sample input and see that it produces results which are known to be

correct. If the results are incorrect, the program must be modified ang

tested until it does produce correct results. This process is known as

testing and debugging. Computer malfunctions are rare, and if the

computer works to store the program, it is probably working perfectly.
If the program does not work, you need to puzzle out how the computer is

doing something which you didn't realize that you ¢told it to do.
Programming can be frustrating, but if you enter the right commands, the

computer will do the right things foér you. '

A SIMPLE BASICO0S9 PROGRAH

Probably the easiest way to explain programming is by example. This

simple program sometimes keeps kids happy for hours. First, the program

asks the wuser for his name. Then the computer types out "Hi", then the

name, then “"see you later®TM. This may not seem like much, but it is great

fun to type in things which are not your name, and see if they will be

printed out. They will, of course.

When you turn on the BASIC09 computer it will print some heading

information. If the prompt is "0S9: ", enter "basic09" (and a carriage-

return) to get to the prompt "B:". When you have the prompt "B:", it

means that the system is in the BASIC09 "command mode", While in the
command mode, you can do several things like: list, kill, or create

programs (called "procedures" in BASIC09). BASIC09 lets you keep several
different programs in memory at the same time, Each program is

identified by a name you give it when you create the procedure.

To <create a new procedure you command the system to enter the "edit

mode”TM by typing a simple "e" (in upper or lower case) and a carriage-

return (the ENTER or RETOURN key). The Editor lets you enter or change

programs and actually checks for many common errors as you type in your

program. Automatic checking feature is one of the nicest things about

BASIC09. Because it's always "looking over your shoulder"TM to catch

mistakes, it saves a 1lot of debugging time! If you're not 100% sure

about how something works, you can go ahead and try it instead of digging

though this manual,. If you guess wrong, BASICO09 will usually show you

wnhere and why.

Because you did not specify a particular procedure name, BASICO9

will auvtomatically select the name "PROGRAM" for you and will respond by
printing out "PRCCEDURE PROGRAM"; this means that you will be editing a

procedure which is named PROGRAM. Later you will see that you can enter

many different procedures and give them different names (just type the

Page 2-2

BASIC09 REFERERCE MANUAL

Introduction to BASICO0S Programming

name you want to use for the program after the "e"). A procedure name may
be any combination of alphanumeric characters beginning with a letter.

The computer output so far is as follows:

0S9: basic09

BASICO9

READY

B:e

PROCEDURE PROGRAM
*

E:

The asterisk (*) indicates the "current edit line" in the procedure
being edited. 1In this case, the current line is empty since you have not
yet entered anything. The asterisk is handy, since you will be moving
back and forth between different lines to edit them. Later, you will be
"opening” existing procedures for modification, and the first line will
be displayed automatically, helping identify that you are editing the

correct program,

When BASIC09 responds with the edit prompt "E:", it is in the edit
mode. Now you can enter "edit commands” which help enter the computer
program, While in edit mode, BASICO09 ALWAYS TAKES THE FIRST CHARACTER OF

EVERY LINE AS AN EDIT COMMAND. Some of the basic edit commands are:

<space> <program statement> <cr> insert a line

+ <cr> go to next line down (just <cr> also does the same)
- <cr> move back to previous line

L <cr> 1list current line

d <cr> delete current line

You must type an edit command at the start of each line. If you forget

to type an edit command, BASIC09 will respond with "WEAT?". The most

important edit command is the (invisible) space character; it means "save

the following line of text". The "space” command is the way most text is

entered into the system. If a line is to be entered, you must type a

space before the rest of the line. Another useful edit command is "L*"
(or "1*", since the editor accepts either upper or lower case) which will

cisplay the whole procedure. This &allows you to watch the procedure

develop as lines are entered.

You use the "space®TM command to enter the following line:

E: PRINT "type your name"
%*

When BASICO09 executes procedure PROGRAM, this line will tell it to print

on the screen all of the characters between the quotes.

Page 2-3

BASIC(09 REFERENCE MANUAL

Introduction to BASIC09 Programming

As mentioned before, BASIC0% checks for errors at the end of each

line and again when the edit is finished. These errors are, in general,

anything BASIC09 cannot identify or things that don't conform to the

rules of the 1language. An error could be a bad character, mismatched

parenthesis, or one of many other things. BASIC09 will print out an

"error code" to identify the error and print an up arrow character under

the place in the line where it detected the error. The error codes are

listed at the end of this manual. If the error was detected at the end

of the edit session, the 1I-code 1location of the error will also be

printed. Cryptic information is all BASICO09 knows about the problem.

Hopefully, it will help you to find and fix the error.

In the same way that you entered the first line, enter the following

lines, Remember that the first character entered must be a space to get

BASICO09 to save the rest of the line., Example:

E: IRPUT name$
*

¢ PRIRT "Bi ";name$;", see you later."

*9%o : ERD

The second line ("input name$"), when executed, commands BASIC09 to wait

for a 1line of text to come in from the keyboard (this will happen after

the wuser reads the message printed out in the first line). BASIC09 will

accumulate text from the keyboard character-by-character until a

carriage-return ends the 1line. This text is placed in the memory area

corresponding to the variable "name$". The dollar-sign ($) on the end of

the variable tells BASIC09 that you want to store a sequence of

characters as opposed to a number.

The third 1line of procedure PROGRAM (print "Hi ";name$;", see you

later."), starts out 1like the first line. The command "print" causes

BASIC09 to print out the various values which come after it. When this

line is executed, the characters H, i, and "spaceTM are printed out since

they are enclosed in double-guotes. Next, without additional spaces,

BASIC09 prints out the line which was typed in by the user and saved in

the memory corresponding to "name$" and prints out " see you later",

When a PRINT statement contains multiple values, it will print them out

one after the other. If the separator is a comma, BASIC09 will move to

the next 16-column "tab stop" before printing the next value. However,

if the separator between print values is a semicolon, absolutely no space

will separate the values. The last line of the procedure (“"END") tells

BASICO09 to stop executing the programn and to return to the command mode

(B:). You have not yet EXECUTED the procedure, you are just EDITING. 1If

you type in 1*, the whole program will be listed as follows:

E:l1*

Page 2-4

BASIC09 REFERENCE MANUAL

Introduction to BASIC09 Programming

PROCEDURE PROGRAM

0000 PRINT "type your name"

0012 IRPUT name$

0017 PRINT "Hi "; name$; ", see you later."

0035 ERD
%

E:

Notice that the editor has added some information which you did not type

in. You can use this listing to see exactly what to type in to run this

program, but the editor only wants the relevant information.

The numbers to the 1left are "I-code addressesTM. These are the

actual memory locations where each line begins relative to the start of

the procedure. These number may look strange because they are in

hexadecimal (base 16). These values are important, since the compiler

may find errors at some I-code 1location and will try to convey what

information it has to the programmer., I-code addresses are supplied

automatically by BASICO0S. v :

The space between the "I-code addresses” and the beginning of the
program line is reserved for "line numbers". Line numbers are required

in many versions of BASIC (although not in BASIC09). Notice that

although the program was typed in lower case some words are printed in

upper case. BASIC09 identifies valid command "keywords" and converts

them to upper case automatically.

~ Now let's run it. First type "g" to gquit the editor. We are now

back in "command modeTM (B:). Now type "run". BASIC0S remembers the

last procedure edited (PROGRAM) and starts to execute it.

E:qg

READY

B:ROKN

type your name

? tex

Hi tex, see you later.

READY

B:

The question mark (?) is the normal input prompt to tell the user that

the program is waiting for input.

This program is extremely simple, but younger kids can get great fun

from it, 1Its action is especially amusing to young people who are
learning a computer language for the first time because a machine is

"respondingTM to them, and because the machine is too easily "fooled" if
you do not type in a real name,

BASIC0S REFERENCE MANUAL

Introduction to BASIC09 Programming

BASIC PROGRAMMIRG TECHNIQUES: LCOPS AND ARITHMETIC

Another simple program that most of us can identify with is a
program to print out multiplication tables. ‘

PROCEDURE multable

FPOR i=1 TO 9

FOR j=1 TO 9

: PRINT i*j; TAB(5*3j);
REXT j

PRIRT

REZT i

First, open the editor by typing "e multable" as follows:

B: e multable

PROCEDURE multable
*

E:

Next, ¢type in the program 1line-by-line starting with "FOR i=1 TO 9"
(lower-case is perfectly fine). If you loose your way, type "L*" to see
where you are, The entire procedure will be displayed and an asterisk
placed at the left of the current line. If you make a mistake, use "+"

or "-" to move to that line, use "d" to delete the line, and use the
space command to enter the line over. Make sure that there are no errors
and then type "gq". When you have the program running, try adding a

statement before "POR i=1 TO 9" as follows: "DIM i,j:IRTEGER".

The POR i=1] TO 9 and REXT i constitute the start and end of a

control structure or "loop®. A control structure is used to cause
repeated or conditional execution of the statement(s) it surrounds. A

control structure usually has one entry at the top and one exit at the
bottom. In this way, the entire structure takes on the properties of a

single statement. The beginning statement of the FOR...REXT structure
(POR...) provides "loop initialization", places the wvalue 1 in the

storage called "i", and sets up the operation of the following NEXT

(every POR must have a REXT). When "NEXT i" is executed, the value in

"i" is increased by 1l (which is the default STEP size) and compared to

the wvalue 9 (which is the ending value for this loop). If the resulting

"i" is less than or equal to 9, the statement(s) following that POR... is

(are) executed.

Loops can be "nested" to execute the enclosed statements even more
times. For example, the PRINT statement in "multable" is executed 81
times; once for each of 9 values of "j", and this number (9 times) for
each of 9 values of "i". The ability to tremendously increase the number
of times some code is executed is at the heart of both computer

Page 2-6

BASIC09 REFERENCE HMANUAL

Introduction to BASIC09 Programming

programming and programming errors. It means that a very small portion

of a program can often be made to do the vast majority of the work. But

a few remaining special cases may require individual handling and may

consume more programming and code than that which "usually”TM works.

Unfortunately, "usually” is not sufficient. A special case which occurs

once in a thousand times may occur once a second, and if the error stops

the program, further processing of normal values also stops. Experience
has indicated that the programmer should know what is happening in the

first and second pass, and the next-to-the-last and last pass through

each loop in the program.

LISTING PROCEDURE RAMES

The "DIR" command causes BASIC09 to display the names and sizes of

all procedures in memory. This command is used so frequently that there

is a quick shorthand for DIR: a simple <cr> when in command mode does the

same thing. You will see a table of all procedure names with two numbers

next to each name. The first column, "proc size", is the size of the'

corresponding procedure. The "data size"TM column shows the number of
memory bytes that the procedure requires for its variables. On the last

line, this ~command shows the amount of free bytes of workspace memory
remaining. You can use this information to estimate how much memory your
program needs to run. You must have at least as much free memory as the

size of the procedure(s) to be run. If a data size number is
followed by a question mark, this means you definitely need more memory.

REQUESTIRG MORE MEMORY

BASIC09 automatically gets 4K bytes of workspace memory from OS-9

when it starts up. There is almost always more than this available, but
BASIC09 does not grab it all so other tasks running on your computer can
have memory too. If you are not multitasking and need more memory, the
MEM command can get it if available. Just type MEM and the amount of
memory you want. Depending on your computer and how it is configured,
you can usually get at least 24K in 0S-9 Level One Systems or 40K in 0S-9
Level Two systems. For example:

MEHX 20000

requests 20,000 (20K) bytes of memory. BASIC09 will always round the

amount you request up to the next highest multiple of 256 bytes. If MEM
responds with "WHAT?", the requested amount of memory is not available.

There is another convenient way to request more memory when you first
call up BASIC09 £rom O0S-9,. 0S-9 has a "#" nmemoryv size option on the
command line that lets you specify how much memory to give the program.
To call BASICO09 with 16K of memory to start with, you can type:

0S9: basic09 %16K

BASIC09 REFEREKRCE MHARUAL

Introduction to BASIC09 Programming

STORIKG AND RECALLING PROGRAMS

Nobody wants to retype a whole program every time it is to be run.
Two commands, SAVE and LOAD, are used to store programs and recall
previously "SAVEAQ" programs to or from 0S-9 disk files, The simplest way

to use SAVE is by itself. It will store the procedure last edited or run

on a disk file having the same name. For example: '

B: SAVE

If our procedure name is the default name "PROGRAM", BASIC09 will create

a file called "PROGRAM" to hold it. 0S-9 won't let you have two files of

the same name, because unigue names are necessary to identify the

specific file you want. Therefore, if a file called "PROGRAM" already

exists, BASICO09 will ask you:

Overwrite?

If you respond "Y" for YES, it will replace the program previously stored

in that file with the program to be saved, which is ORK if what you want

to save is a newer version of the same program, if not, you will
permanently erase another program you may have wanted to keep. If this
is the «case, answer "N" for NO, Fortunately, there is a simple way to

store the new procedure in a file using a different name: just type

SAVE, a ">", and a different file name of your choice. The file name can

consist of any combination of up to thirty-one letters, numbers, periods,

or underscores ("_"). The only restriction is that the name must start

with a letter A-Z or a-z. For example:

SAVE >newprogramb

will save the program in a file called "newprogram5". There are several

useful variations of the SAVE command that 1let you save various
combinations of programs in the same file. See the SAVE command

description for more information. You should also read Chapter 2 of the
"0S-9 Users Manual” to learn about the 0S5-9 commands that deal with disk

files.

If you exit from BASIC0%, it WILL NOT automatically save your

programs. You must make sure to save them before you quit or they will

be lost, unless they were saved at some time before!

The LOAD command, as its name implies, reads in a previously saved

program from a disk file. You must give the name of the file with the

command. For example:

LOAD program

If you just started BASIC09 and have not created any new procedures, this

command is very straightforward. As the procedures stored in the file
are loaded, BASICO0S displays their names as they are brought in. Once

Page 2-8

e

BASICO0S REPERERCE MANUAL

Introduction to BASIC09 Programming

the program is 1loaded, you can edit and/or run it. But if you have a

procedure in BASIC09 that has the same name as a procedure stored in the

file, BASIC09 will replace it with the version loaded from the file., If

this kind of conflict exists you could lose your original procedure,so

be sure to save or RENAME it before loading another one (remember that

BASIC09 can keep several procedures in memory at the same time as long as

they have different names). If you want to permanently erase all other

procedures before loading new ones, you can type:

B: KILL*

This tells BASIC09 to "kill" all procedures in memory and has the same

effect as completely resetting BASICOS. 4

BOW TO PRINT PROGRAM LISTIRGS

If your computer is equipped with a printer, you will want to make

hard-copy listings of your programs. This is easy to do - just type:

B: LIST* /p

This tells BASICO09 to LIST all procedures in memory to the output device

"/p" which is the printer device name in most 0S-9 systems. Like the

SAVE command, ‘LIST has several useful variations. If you want to list
just one procedure (and there is more than one in memory) you can type:

B: LIST procedurename >/P

If you want, you <can list multiple procedures by replacing the single

procedure name with a list of procedure names. Separate each procedure
name from the next with a "space®". An example is:

B: LIST procedurenamel procedurename2 procedurename3 >/P

Notice that if you omit the "/p" or ">/p" from the commands above, the

program will be listed on your display instead of the printer. This is
the same as the "L*" command in Edit Mode. - You will also notice that the
listing will be automatically "pretty-printed”, e.g., program levels

within loops are indented for easy reading.

FPage 2-9

BASIC09 REFERERCE MARUAL

Introduction to BASIC09 Programming

BASICO0S8'S FOUR MODES

At any given time, BASICO09 is in one of four modes:

SYSTEM MODE: executes system-oriented commands

EDIT MODE: creates or changes procedures

EXECUTION MODE: runs programs

DEBUG MODE: used to test and verify programs

So far, you have been exposed to System Mode (SAVE, LOAD, etc.), Edit

Mode (the editor), and Execution Mode (RUN). A section of this manual is

devoted to each mode. The chart below shows how various commands in each

mode will cause a change to another mode.

BASICO09 MODE CHANGE POSSIBILITIES

05-9 SYSTEM MODE EDIT MODE

I | I | + I
| | $ I | - I
| (m==——4-=<e0f> | | <er> I

| <=—=—v +=-=-BYE | | <line#> |
| | CHD | | <space> |
I | CHX I | ¢ |
! | DIR [| @ |
| | EDIT--——to—e=——- > 11 I

| | RILL | (==——mm- +-q |
! | LIST | | ¢ I e

BASIC09—+-———- > | LOAD | | 8 I | TROR I

I | MEM I e | TROFF |

| | PACK | < - ———————————————— + END or Q |
| | RERAME | | DEG/RAD |

I | ROR-——-—- S > —— | STATE I

| | SAVE I +-ERD | | § I
| | | (emmmmee +=<CTRL Q> | | BREAK |
| ———————— e +-STOP | <===mo +-CORT |

BASICO9 | | PAUSE~--——4—=——- > | DIR |
AUTORUN=+4===—m e e > | ERROR-==—4-——= > | LET |

| | <CTRL C>—+4-———- > | LIST I

I— +~BYE | | PRINT |

| | PROGRAK | <----- +-STEP I

EXECUTION MODE DEBUG MODE

Page 2-10

BASIC09 REFERERCE HARUAL

Introduction to BASICO09 Programming

MORE ABOUT THE WORKSPACE...

The workspace concept is important because BASIC09 and 0S-9 are both

highly modular systems, and the workspace is a way to logically group a

set of procedures (i.e. modules) which are applicable to a particular

line of study or development. Modular software development lets the

programmer divide a large and complex project into smaller, more

manageable, and individually testable sections. Modularity also lets

programmers accumulate.and use libraries of commonly used routines.

As the software is written and debugged, BASICO09 makes it easy to

deal with the ©procedures that comprise "an overall project, either

individually or as a group. For example, you can save all procedures in

the workspace to a single mass storage file or load a file containing

multiple procedures. Usually all procedures associated with a project

exist inside the workspace, However, you can also call library

procedures which are "outsideTM the workspace in 05-9 memory module

format. The library procedures can be written in BASICO09 or machine
language, can be in RAM or ROM memory, and can even be shared by several
users.,

BASIC09 always reserves approximately 1.2K bytes of the workspace
for internal use. All remaining space is used for storage of procedures

and for procedure variable storage during execution. BASIC09 will not

run a procedure if there is not enough space for variables. If you run

out of workspace area, you can use the MEH command to enlarge the
workspace or you can kill procedures in the workspace that are not

needed. The "MEM" command can be used at any time to change the size of
the workspace. The size of the workspace can be increased (subject to
availability of free memory) or decreased (but not below the minimal
amount needed to store the present contests of the workspace).

WEERE TO GO FROM HERE?

A good way to learn BASICO09 is to use it! Try typing in and running
some of the example programs in the back of the book. Look up and study
the function of each program statement. Read the chapters on the EDIT

and DEBUG modes and experiment with more advanced commands. Since

BASIC09 and the 0S-9 Operating System are so intimately connected, a

basic wunderstanding of 05-9 is necessary. See Chapter 2 of the "0S-9
OPERATING SYSTEM USER'S MANUAL.

Page 2-11

BASIC09 REPERENCE MANUAL

Introduction to BASIC09 Programming

This Page Intentionally Blank

Page 2-12

BASIC09 REFERENCE MANUAL

System Mode '

SYSTEM MODE COMMARDS

System Mode includes commands to save, load, examine procedures;
commands to interact with 08-9; and other commands to control the

workspace environment. A complete 1list of system commands is given

below.

| System Mode Commands

$ CEX EDIT LOAD RENAME
BYE DIR KILL . MEHM RON

CED E LIST BACK SAVE

The system commands are processed by the BASIC09 "command

interpreterTM which always identifies itself with the "B:" prompt. It is

entered automatically when BASIC09 is started up and whenever you exit

any other mode. Commands can be entered in either upper or lower-case

letters. Commands such as DIR, MEM, "$" and BYE don't operate on
specific procedures but may have optional or required parameters. Other

commands (such as SAVE, LOAD, PACK, KILL and LIST) can be made to operate

on a specific procedure or on ALL procedures within the workspace. If
the command is used with a specific procedure name, the command is

applied to only that procedure. For example:

LIST pete

will display the procedure named "pete". The asterisk is a special name
that means "all procedures in the workspace". Therefore, if the ccmmand
is given followed by an asterisk it is applied to all procedures. For
example: ' '

LIST*

will display all of the procedures in the workspace.

If the command is given without any name at all, the "current

working procedure" is used, which means the name of the procedure last
given in another command. The DIR command prints an asterisk before the

current procedure's name so it can be found at any time. If you have not

vet given a name in any command, the name "PROGRAM" is automatically
used. Some commands that require a file name as well as (one or more)

procedure names require that a ">" precede the file name so it is not

mistaken for a procedure name. If you omit the file name, the name of

the (first) procedure is used instead. In this manual, the phrase "file

rname" means an O0S-9 ‘"pathlist" which can describe either a file or

device.

Page 3-1

BASIC09 REFERENCE MARUAL

System Mode

Here are some examples:

SAVE tom,bill >myfile

SAVE* big_file

or

SAVE tic,tac,toe

which is exactly equivalent to

SAVE tic,tac,toe >tic

Another class of commands uses only one procedure name, or the

current working name if a name is omitted. These commands change the

mode of BASIC09 by exiting the command mode and entering another mode.
These commands are:

ROR which enters Execution Mode to run a procedure

EDIT which enters Edit Mode to create or change a procedure

The one other mode, Debug Mode, cannot be entered directly from the
system mode -~ more on this later.

SYRTAX ROTATIOR USED IR DESCRIPTIONS OF SYSTEH COMMANDS

Individual descriptions of each system command follow. 1In order to

precisely describe their formats, the syntax notation shown below is

used.

things in brackets are optional.

{ } things in braces can be optionally repeated
<procname> means a procedure name

<pathlist> "is an 0S-9 file name

<number> is a decimal or hex number

Page 3-2

BASIC09 REFEREKRCE MANUAL

System Mode

$ [<text>] ("Shell" Command)

This command calls the 0S-9 Shell command interpreter to process an 0S-9

command or to run another program. Running the 05-9 command does not

cause BASIC09 or its workspace to be disturbed.

If the - "$" is followed by text, the Shell is called to process the text
as a single 05-9 command line. After the command is executed, BASICO09 is

immediately reentered. ' '

If no text is given, BASIC09 is suspended and the 0S-9 Shell is called to

process multiple command 1lines individually entered from the keyboard.

Control is returned to BASIC09 when an end-of-file character (usually
ESCAPE) is entered. The contents of the BASIC09 workspace is not

affected. This is a convenient way to temporarily leave BASICO09 to

manipulate files or perform other "housekeeping”.

This command is the "gateway" to 0S-9 from inside BASIC09. It allows

access to any O08S-9 command or to other programs. It also permits
creation of concurrent processes and other real-time functions.

Examples:

B: Scopy filel file2 calls the 0S-9 "copy" command

B: Sasm sourcefiles& calls the assembler as a backaround task

B: $basic09 fourier(20)& starts another concurrent BASICO09
program

BYE (or ESCAPE character)

BYE exits BASIC09 and returns to 0S-9 or the program that called BASICO9.
Any procedures in the workspace are lost if not previously saved. The
escape key (technically speaking, an end-of-file condition on BASIC09's
standard input path) does the same thing.

CHD <pathlist> or CHX <pathlist>

CED changes the current 0S-9 user Data or Execution Directory to the

specified pathlist which must be a directory file. BASIC09 uses the Data
Directory to LOAD or SAVE procedures. The Execution Directory is used to
PACK or auto-load packed modules. An example follows.

BASIC09 REFERERCE MARUAL

System Mode

Example:

CED /dl1/joe/games

DIR [<pathlist>]

DIR displays the name, size, and variable storage requirement of each.

procedure presently in the workspace. The current working procedure has
an asterisk before its name. BAll PACKed procedures have a dash before
their name (see PACK). The available free memory within the workspace is
also given, If a pathlist is given, output is directed to that file or
device.

A gquestion mark next to a data storage size means the workspace does not
have enough free memory to run that procedure.

Note: This command should not be confused with the 0S-9 "DIR" command.
They have completely different functions.

EDIT [<procname>]

E [<procname>]

EDIT (E) exits command mode and enters the text editor/compiler moée. If
the procedure named does not exist, a new one is created.

See Chapter 4 for a complete discussion of how edit mode works.

Examples:

E newprog

EDIT printreport

EILL ([<procname> {,<procname>}]

KILL*

KILL erases the procedure(s) specified. KILL* clears the entire work-

space. The process may take some time if there are many procedures in the

workspace.

Examples:

KILL formulas

RKILL progl,prog3,prog?

Page 3-4

BASIC09 REFERENRCE MANUAL

System Mode

LIST [<procname> {,<procname>}] [> <pathlist>]
LIST* [<pathlist>]:

LIST prints a formatted "pretty printed" 1listing of one or nmore

procedures. The 1listing includes the relative I-code storage addresses

in hexadecimal numbers in the first column. The second column is

reserved for program line numbers (if line numbers are used).

If a pathlist |is given, the listing is output to that file or device.
This option is commonly used to print hard-copy listings of programs.

The LIST, SAVE, and PACK commands all have identical syntax, except that

LIST prints on the 0S-9 Standard Error Path (#2) if no pathlist is given.

The files produced are formatted differently, but the £function is

similar.

IMPORTANT NOTE: If an "*" is used with LIST, SAVE, or PACK, the file

name follows immediately WITHOUT a ">" before it!

Examples:

LIST* /p

LIST prog2,prog3 >/p

LIST prog5 >temp

LOAD <pathlist>

LOAD 1loads all procedures from the file specified into the workspace. As

procedures are loaded, their names are displayed. If any of the

procedures being loaded have the same name as a procedure already in the
vorkspace, the existing procedures are erased and replaced with the
procedure being loaded.

If the workspace fills up before the 1last procedure in the file is
loaded, an error (%#32) is given. 1In this case, not all procedures may
have been loaded, and the one being loaded when the workspace became full
may not be completely loaded. The user should KILL the last procedure,
use the MEM command to get more memory or KILL unnecessary procedure(s)
to free up space, then LOAD the file again.

Example:

LOAD quadratics

Page 3-5

BASIC(09 REFERERCE MARUAL

System Mode

MEM

MEM <number>

MEM used without a number displays the present total workspace size in

(decimal) bytes. If a number is given, BASIC09 asks 05-9 to expand the
workspace to that size. A hex value can be used if preceded by a dollar
sign. If MEM responds with "WHAT?", you either asked for more memory

than is available, tried to give back too much memory (there has to be.
enough to store all procedures in the workspace), or gave an invalid

number.

Example:

MEM 18000

PACK [<procname> {,<procname>}] [> <pathlist>]

PACK* [<pathlist>]

PACK causes an extra compiler pass on the procedure(s) specified which

removes names, line numbers, non-executable statements, etc. The result

is a smaller, faster procedure(s) that CANNOT be edited or debugged but

can be executed by BASICO09 or by the BASIC09 run-time-only program called
"RunB". If a pathlist is not given, the name of the first procedure in
the list will be used as a default pathname. The procedure is written to
the file/device specified in 0S-9 memory module format suitable for

loading in ROM or RAM OUTSIDE the workspace. THE RESULTING FILE CANNOT
BE LOADED INTO THE WORKSPACE LATER ON, so you should always perform a
regular SAVE before PACKing a procedure!

Basic09 will automatically load the éacked procedure when you try to
run it later on. Here is an example sequence that demonstrates packing a
procedure:

PACK sort packs procedure "sort" and creates a file

RILL sort kills procedure inside the workspace

RON sort run (sort will be loaded outside workspace)

KILL sort done; we delete "sort" from outside memory.

Tne 1last step (kill) dées not have to be done immediately if you will be
using the procedure again later, but you should kill it whenever you are

done so its memory can be used for other purposes. Examples follow.

Page 3-6

BASIC09 REFERENCE MARNUAL

System Mode

Examples:

PACK procl,proc2 >packed.programs

PACK* packedfile

RERAME <procname>,<new procname>

RERAME changes' the name of a procedure. Can be used to allow two copies

of the same procedure in the workspace under different names.

Example:

RERAME thisproc thatproc

RUN [<procname> [(<expr> , {<expr>}) 1]

RUN executes the procedure specified. Technically speaking, BASICO0S then

leaves System Mode and enters Execution Mode. A

A parameter list can be used to pass expected parameters to the procedure
in the same way a RON statement inside a procedure calls another

procedure except for the restriction that all parameters must be

constants or expressions without variables. See the PARAM statement

description. Assembly language procedures cannot be run from System

Mode.

The procedure called can be normal‘or "packed". 1If the procedure is not
found inside BASIC09's workspace, BASICO09 will call OS-9 to attempt to

LIRK to an external (outside the workspace) module. If this fails,
BASIC09 attempts to LOAD the procedure from a file of the same name.

Examples:

ROKR getdata

RUN invert("the string to be inverted")

ROR power(12,354.06)

ROR power ($32, sin(pi/2))

Page 3-7

BASIC0S REFERERCE MANUAL

System Mode

SAVE [<procname> {,<procname>} [> <pathlist>]]

SAVE* [<pathlist>]

Writes the procedure(s) (or all procedures) to an output file or device

in source format. This command is similar to the LIST command except the

output is not formatted and 1I-code addresses are not included. If a

pathlist is not specified, it will default to the name of the first

procedure listed. -

If a file of the same name already exists, SAVE will prompt with:

rewrite?

You may answer "Y" for yes which causes the existing file to be rewrltten
with the new procedure(s); or "N" to cancel the SAVE command.

Examples:

SAVE proc2,pr6c3,proc4 >monday.work

SAVE* newprogram

SAVE

SAVE >testprogram

Page 3-8

BASIC09 REFERENCE MANUAL

Edit Mode

Edit Mode (also called "The Editor") is used to enter or modify

BASIC09 procedures. It 1is entered from System Mode by the EDIT (or E)

commangd. As soon as Edit Mode is entered, prompts change from "B:" to

"E:". If you have used a text editor before, you will find the BASICO09

editor similar to many others except for these two differences:

1. The editor is both "string" and "line number" oriented.The

use of line numbersis optional and text can be corrected

without re-typing the entire line.

2. The editor is interfaced to the BASIC09 compiler and "decom-

piler" which lets Basic09 do continuous syntax error checking

and permits programs to be stored in memory in more compact

compiled form.

OVERVIEW OF EDIT COMMANDS

The Editor includes the following commands. Each command is

described in detail later in this chapter. ‘

EDIT MODE COMMANDS

<cr> move edit pointer forward one line

+[<number>] move edit pointer forward

+* move edit pointer to end of text

- [<number>] move edit pointer backward

-* move edit pointer to beginning of text
{space> <text> insert unnumbered line

<line#> <text> insert or replace numbered line

<line%#> <cr> find numbered line

c change string

c* ' change all occurrences of string

d delete line

a* delete all lines

1 list line(s)

1* , list all 1lines

q guit editing

r renumber line

r* renumber all lines

s search for string.

s* search for all occurrences of string

BASIC(09 REFERERCE MANUAL

Edit Hode

BOW THE EDITOR WORKS

In order to understand how the editor works it is helpful to have a

general idea of what goes on inside BASIC09 while you are editing

procedures. BASIC09 programs are always stored in memory in a compiled

form called "I-code" (short for "Intermediate Code"). I-code is a

complex binary coding system for programs that lies in between your

original "source" program and the computers native "machine language".
I-code is relatively compact, c¢an be executed rapidly, and most

importantly, can be reconstructed almost exactly back to the original
source program. The Editor is closely connected to the "compilerTM and

"decompiler" systems within Basic09 that translate source code to I-Code

and vice-versa. It is this innovative system that gives BASIC09 its most

powerful and unusual abilities.

Whenever you enter (or change) a program line and hit "return", the

compiler instantly translates this text to the internal "I-code" form.
Whenever BASIC09 needs to display program 1lines back, it uses the

decompiler to translate the I-code back to the original "source" format.
These processes are completely automatic and do not require any special

action on your part.

This technigue has several advantages. First, it allows the text

editor to report many (syntax) errors immediately so you can correct them
instantly. Secondly, the 1I-code representation of a program is more

compact (by about 30%) than its original form so you can have larger
programs in any given amount of available memory.

When programs are listed by BASICO09, it is possible that they will
have a slightly different appearance than the way they were originally

typed in, but they will always be functionally identical to the original
form. A different appearance can happen if the original program had

extraneous spaces between keywords, unnecessary parentheses in

expressions, etc. BASIC09 keywords are always automatically capitalized.

When you have finished editing the procedure, use the "g" (for

"quitTM) command to exit the Edit Mode and return to the System Mode.

When you give the "q" command, the compiler performs another "pass" over

the entire procedure. At this time, syntax that extends over multiple

lines 1is checked and errors reported. Examples of these kinds of errors

are: GOTO or GOSUB to a non-existent line, missing variable or array

declarations, improperly constructed loops, etc. These errors are
reported using an error code and the hexadecimal I-code address of the

error., For example:

01FC ERR #043

This message means that error number 43 was detected in the line that

included I-code address 01FC (hexadecimal). The LIST command gives the

I-code addresses so you can locate lines with errors reported during the

compiler's second pass.

Page 4-2

BASIC09 REFERERCE MANUAL

Edit Mode

LINE-NUMBER ORIERTED EDITIRG

As mentioned previously, the editor has the capability to work on

programs with or without line numbers (or both). Line numbers must be

positive whole numbers in the range of 1 to 32767. ' ’

If you have experience with another version of the BASIC language,

this is the kind of editing you probably used. However, well structured

programs seldom really need line numbers. 1If you don't have to use line

numgers, don't, Your programs will be shorter, faster, and easier to

read.

The line number oriented commands are:

<line#> <text> insert or replace numbered line

<line#> <cr> £find numbered line

d delete line

r renumber line

r* . renumber all lines

To enter or replace a numbered line, simply type in the line number

and statement. Numbered 1lines can be entered in any order but will be

automatically stored in ascending sequence. To move to a numbered line,

type the line number followed by a carriage return. The editor will move

to that 1line (or the one with the next higher number if not found) and

print it. The line may be deleted using the "d" command.

The "r®" renumber command will uniformly resequence all numbered

lines and lines that refer to numbered lines. Its formats are:

r [<beg line #>] [,<incr>] <CR>

r*[<beg line #>] [,<incr>] <CR>

The first format renumbers the program starting at the current line

forward. Lines are renumbered using <beg 1line#> as an initial line
number, and each <incr> is added to the previous line number for the next

line's number. For exanmple,

r 200,5

will give the first line number 200, the second 205, the third 210, etc.

If <beg 1line#> and/or <incr> are not specified, the values 100 and 10,
respectively, - are assumed. The second form of the command is identical
except it renumbers all lines in the procedure.

Page 4-3

BASIC09 REFERERCE HARUDAL

Edit Mode

STRIRG-ORIENTED EDITIRG

Most editor commands are string-oriented, which means that you can

enter or change whole or partial lines without using line numbers at all.
You will £ind that string-oriented editing is generally faster and more
convenient.

. Because line numbers are not used, there has to be another way to

tell BASIC09 what place in the program to work on. To do this, the

editor maintains an "edit pointer"TM that indicates which line is the

present working location within the procedure, and commands start working

at this point. The editor shows you the location of the edit pointer by

displaying an "*" at the left side of the program line where the edit
pointer is presently located.

BOVIRG THE EDIT POIRTER

The "+" and "-" commands are used to reposition the edit pointer:

- moves backward one line

- <number> moves backward n lines

~%* moves to the beginningof the procedure
+ moves forward one line

+ <number> moves forward N lined

+* moves to the end of procedure

The number indicates how many lines to move. Backward means towards the
first line of the procedure. 1If the number is omitted, a count of one is

used (this is true of most edit commands). A line consisting of a

carriage return only also moves the pointer forward one line, which makes

it easy to “"step" through a program a line at a time. Therefore, the

following commands all do the same thing:

<CR>

+ <CR>

+1 <CR>

INSERTIRG LIRES

The Insert Line function consists of the "space" character followed
by a BASIC09 statement line. The statement is inserted just ahead of the
ecdit pointer position (the space itself is not inserted).

Page 4-4

BASIC0Y9 REPERENCE MARUAL

Edit Mode

DELETING LINES

The "d" command is used to delete one or more lines. Its format is:

d [<number>] <CR>
d*

The first form deletes <number> 1lines starting at the current edit

pointer 1location. The second form deletes ALL lines in the procedure

(caution!). The editor accepts "+*" and "-*" to mean to the end, or to

the beginning of the procedure respectively. If the number is negative,

that many lines BEFORE the current line are deleted. If a line number is

omitted, only the current line is deleted.

LISTING LIRES

The "1® command is used to display one or more lines. It also has

the forms: -

1. [<number>] <CR>
1*

The first form will display <number> lines starting at the current edit

pointer position. If the number is NEGATIVE, previous lines will be

listed. The second form displays the entire procedure. Neither changes

the edit pointer's position. The line that is the present position of

the edit pointer is displayed with a leading asterisk.

SEARCH: FIRDING STRINGS

wWhat's a string? A string is a seqguence of one, two, Or more

characters that can include letters, numbers, or punctuation in any
combination. Strings are very useful because they allow you to change or

locate just part of a statement without having to type the whole thing.
In the Editor, strings must be surrounded by two matching punctuation
characters (called delimiters) so the editor knows where the string

begins and ends. - The characters used for delimiters are not considered
part of the string and cannot also appear within the string. Strings

used by the Editor should not be confused with BASIC09's data type which
is also called STRIRG - they are different creatures.

The "s" command may be used to locate the next occurrence or all
occurrences of a string. The format for this command is:

g <delim> <match str> [<delim>] <Kcr>

s*<delim> <match str> [<Kdelim>] <cr>

The first format searches for the <match str> starting on the current

edit pointer 1line onward. If any line at or following the edit pointer

Page 4-5

BASIC0S REFERENCE MARUAL

Edit Hode

includes a sequence of characters that match the search string, the edit
pointer "is moved to that line and the line is displayed. If the string
cannot be located, the message:

CAN'T FIND: "<match str>"

will be displayed and the edit pointer will remain at its original

position. The "s*" variation searches for all occurrences of the string.

in the procedure starting at the present edit pointer and displays all

lines in which it is found. The edit pointer ends up at the last line

where the string occurred.

Here are some examples:

E: s/counter/ looks for: counter

E: 8.1/2. looks for: 1/2

E: s?three blind mice? 1looks for: three blind mice

CHARGE: STRIKG SUBSTITUTIOR

The "c" change string function is a very handy tool that can

eliminate a tremendous amount of typing. It allows strings within lines
to be located, removed, and replaced by another string. This command is

very commonly used for things 1like: fixing lines with errors without

having to retype the entire line, changing a variable name throughout a

program, etc. 1Its formats are:

¢ <delim> <match str> <delim> <repl str> [<delim>] <CR>

c*<delim> <match str> <delim> <repl str> [<delim>] <CR>

In the first form, the editor looks for the first occurrence of the match
string starting at the present edit pointer position. If found, the

match stringis removed from the line and the replacement string inserted

in its place. The second form works the same way but changes ALL

occurrences of the match string in the procedure starting at the present

edit pointer position.

The "c*" command will stop anytime it finds or causes a line with an

error. It cannot be used to find or change line numbers.

A wcrd of warning: sometimes you can inadvertently change a line

you didn't intend to change because the match string is imbedded in a

longer string. For example, if you attempt to change "no"TM to "yesTM and

the word "normal" occurs before the "no" you are looking for, "normal"

will change to ®"vesrmal”! Examples follow.

Page 4-6

BASIC09 REPERENCE MANUAL

Edit Mode '

Examples:

c/xval/yval/ and c¢*,GOSUB 5300,GOSUB 5500

Page 4-7

BASIC09 REFPERENCE MANUAL

Edit Mode

This Page Intentionally Blank

Page 4-8

BASIC09 REFERENCE MANUAL

Execution Mode

RUNNING PROGRAMS

To run a BASIC09 procedure, enter:

RON <procname>

If the procedure you want to run was the last procedure edited, listed,

saved, etc,, you can type RON without giving a procedure name at all (the

"*" shown in the DIR command identifies this procedure).

If the procedure expects parameters (see Chapter 7), they can be

given on the same command line, however they must all be constant numbers

or strings, as appropriate, and must be given in the correct order. For

example: s

ROUN add(4,7)

is used to call a program that expects parameters, such as

PROCEDURE add

PARAMETER a,b a,b will receive the values 4,7

PRINT a+b

ERD

The ability to pass parameters to a program allows vou to specifically

initialize program variables. Sometimes certain procedures are parts of

a larger software system and are designed to be called from other

procedures. You can use this feature to individually test such

procedures by passing them test values as parameters,

The RON statement causes BASIC(09 to enter Execution Mode, causing

the procedure to run until one of these things happen:

1. An ERD or STOP statement is executed.

2. You type CONTROL-Q

3. A run-time error occurs

4. You type CONTROL-C (<SEIFT><BREAK>)

In cases 1 and 2, you will return to System HMode. 1In cases 3 and 4 you

will enter Debug Mode.

EXZECUTION HODE: TECENICALLY SPEAKIHNG

The RON statement is simple and normally you don't need to know what

is happening inside BASICO09 when vou use it. The technical description

of Execution Mode that follows is given for the benefit of advanced

BASICOS programmers,

Page 5-1

BASIC09 REFERENCE MANUAL

Execution Mode

Execution mode is BASIC09's state when any procedure is being run.
It involves execution of the I-code of one or more procedures inside or
outside the workspace. Many procedures can be in use because they are
able to «call each other (or themselves) and "nest" exactly like
subroutines do.

Execution Mode can be entered in a number of ways:

l. By means of the RUN system command.

2. By BASIC09's auto-run feature.

The Auto-run feature allows BASIC0S to get the name of a file to
load and run from the same command line used to call BASIC09. The file
loaded and run can be either a SAVED file (in the data directory), or a
PACKED file (in the execution directory). The file may contain several
procedures; the one executed is the one with the same name as the file.
Parameters may be passed followingthe pathname specified. For example,
the following 0S-9 command lines use this feature:

0S9: BASICO09 printreport("Past Due Accounts")

0S9: BASIC09 evaluate(COS(7.8814)/12.075,-22.5,129.055)

Page 5-2

BASIC09 REFERENRCE MANUAL

Debug Mode

OVERVIEW OF DEBUG MODE

One of BASIC09's outstanding features is its set of powerful
svmbolic debugging commands. What is Symbolic Debugglng7 Simply stated,
it 1is testing and manipulation of programs using the actual names and

program statements used in the program. In this chapter you will learn
how Debug Mode can let you watch your program run in slow motion so you

can observe each statement as it is executed. As a bonus, you will also
learn how to use Debug Mode as a powerful calculator.

Debug Mode is entered from Execution Mode in one of three ways:

l. When an error occurs during execution of a procedure (that is not

intercepted by an ON ERROR GOTO statement within the program).

2. When a procedure executes a PAUSE statement.

3. When a keyboard interrupt (CONTROL-C) occurs.

When any of the above happen, Debug Mode announces itself by
displaying the suspended procedure name like this:

BREAK: PROCEDURE test5
D:

Notice that Debug Mode displays a "D:TM prompt when it is awaiting a

command. Any Debug Mode commands can then be used to examine or change

variables, turn trace mode on/off, etc. Depending on which commands are

used, execution of the program can be terminated, resumed, or executed

one source line at a time.

Page 6-1

BASIC09 REFERENCE MARUAL

Debug Mode

DEBUG MODE COMMARDS

$ <text> (Shell Command)

Calls 05-9's Shell command interpreter to run a program or 0S-9 command.
Exactly the same as System Mode "$" command.

BREAK <proc name>

BREAR sets up a "breakpointTM at the procedure named. This command is

used when procedures call each other and provides a way to re-enter Debug

Mode when returning to a specific procedure. To illustrate how BREAK

works, suppose there are three procedures in the workspace: PROC1l, PROC2,

and PROC3. Assume that PROC1 calls PROC2 which in turn calls PROC3.
While ©PROC3 1is executing, you type CORTROL-C to enter debug mode. You

can now enter: ‘

~

D: BREAK procl

ok

D:

Notice that BREAK responds with "okTM if the procedure was found on the

current RUN stack., If you wish you can use the STATE command to verify
that the three procedures are indeed "nested" as expected. Now, you can
resume execution of PROC3 by typing CONT. After PROC3 terminates,
control passes back to PROC2, which eventually returns to PROCl. As soon

as this happens, the breakpoint you set is encountered, PROCl is
suspended, and Debug Mode is reentered.

There are three characteristics of BREAK you should note:

l. The bteakpoint is removed as soon as it occurs.

2. You can use one breakpoint for each active procedure.

3. You can't éut a breakpoint on a procedure unless it has been
called but not yet returned to. Hence, BREAR cannot be used on
procedures that have not yet been run.

conT

Causes program execution to continue at the next statement. It may be
used to resume programs suspended by CORTROL-C, PAUSE statements, BREAK
command breakpoints, or after non-fatal run-time errors,

Page 6-2

BASIC09 REFERENCE MARUAL

Debug Mode

DEG

RAD

Select either degrees or radians as the angle unit measure used by trig-

onometric functions. These commands only affect the procedure currently

being debugged or run.

DIR [<pathname>]

DIR displays workspace procedure directory in exactly the same way as the

System Mode DIR command.

Q

Q terminates execution of all procedures and exits Debug Mode by

returning to System Mode. Any open paths are closed at this point.

LET <var> := <expr>

Essentially the same as the BASIC09 LET program statement, which allows

the value of a procedure variable to be set to a new value using the

result of evaluation of the expression. The variable names used in this

command must be the same as in the original "source" program, otherwise

an error 1is generated. LET does not work on user-defined data

structures.

LIST

LIST displaysa formatted source listing of the suspended procedure with
I-code addresses. An asterisk is printed to the left of the statement

where the procedure is suspended. Only the current procedure may be

listed.

PRINT [#<expr>,] [USIRG <expr>,] <expr list>

PRINT can be used to examine the present value of variables in the

suspended program, All variable names must be the same as in the

original program, and no new variable names can be used. User-defined

data structures can not be printed.

Page 6-3

BASIC09 REFERENCE MANUAL

Debug Mode

STATE

STATE 1lists the calling ("nesting") order of all active procedures. The

highest~-level procedure will always be shown at the bottom of the calling
list, and the lowest-level procedure will always be the suspended
procedure. An example:

D:state

PROCEDURE DELTA

CALLED BY BETA

CALLED BY ALPHA

CALLED BY PROGRAM

STEP [<number>] or <CR>

STEP allows the suspended procedure to be executed one or more source
statements at a time, For example, "STEP 5" would execute the
equivalent of the next 5 source statements. A debug command line which
is just a carriage return is considered the same as "STEP 1". The STEP
command is most commonly used with the trace mode on, so the original
source lines can be seen as they are executed.

Note: because compiled I-code contains actuwal statement memory
addresses, the "top" or "bottom" statements of. loop structures are
usually executed 3just once. For example, in FOR...REXT loops the FOR
statement is executed once, so the statement that appears to be the "top"
of the loop will actually be the one following the "POR" statement.

TRON

TROFP

These commands turn the suspended procedure's trace mode on and off. In
trace mode, the compiled code of each eqguivalent statement line is
reconstructed to source statements and displayed before the statement is

executed. If the statement causes the evaluation of one or more
expressions, an equal sign and the expression result(s) are displayed on

the following line(s).

Trace mode is 1local to a procedure. If the suspended procedure calls

another, no tracing occurs until control returns (unless of course, other
called procedures have trace mode on).

Page 6-4

BASIC09 REFERENCE MANUAL

Debug Mode

DEBUGGING TECERIQUES

If your program doesn't do what you expect it to, it is bound to

show one of two symptoms: incorrect results, or premature termination

due to an error. The second case will automatically send you into Debug

Mode. In the first case, you have to force the program into Debug Mode

either by hitting CORTROL-C (assuming you have time to do so), or by

using Edit Mode to put one or more PAUSE statements in the program.~ Once

you're in Debug Mode you can bring its powerful commandsto bear on the

problem.

Usually the first step after an error stops the program is to use

the PRIRT command to look at the present values of crucial program

variables. Bad values are usually quite apparent. Perhaps you forgot to

initialize a variable or forgot to increment a loop counter.

If examining variables is not fruitful, the next step is to place a

PAUSE statement at the beginning of the suspect procedure or at a place

within it where you think things begin to go amiss, and then you rerun

the program. When the program hits the PAUSE statementand enters DEBUG

mode, it is time to turn the trace mode on and actually watch your

program run., To do so, just type:

D: TROR

After you have done this, you hit the carriage return key once for every

statement. You will see the original source statement, and if

expressions are evaluated by the statement, Debug Mode will print an

equal sign and the result of the expression. Notice that some statements

such as POR and PRINT may cause more than one expression to be evaluated.

Using this technique you can watch your program run one step at a time

until you see where it goes wrong. But what if in the process of doing
so you encounter a loop that works OK but executes 200 statements

repetitively? = That's a lot of carriage returns. In this case, you may
turn the trace off and use the STEP command to guickly run through the
loop. Then turn trace mode back on and resume single-step debugging.
The command sequence for this example is:

D: TROFF

D: STEP 200

D: TRON

Don't forget that trace mode is ®"local"TM to one procedure only. If

the procedure under test returns to another procedure you will need to

use the BREAK command or a put a PAUSE statement in the procedure to

enter Debug Mode. If you call ancther procedure from the procedure being

debugged, tracing will stop wher it is called until it returns. If you

want to trace the called procedure as well, it will need its own PAUSE

statement.

Page 6-5

BASIC09 REFERERCE MANUAL

Debug Mode

DEBUG MODE AS A DESK CALCULATOR

The simple program 1listed below turns Debug Mode into a powerful

desk calculator. It's function is simple: it declares 26 working
variables then goes into Debug Mode so you can use interactive PRIRT and

LET statements.

PROCEDURE Calculator

DIM a,b,c,d,e,f,g,h,i,3,k,1,m

DIRK n,0,p,q9,r,s,t,u,v,w,%x,¥,2
PAUSE

ERD

Recall that while in Debug Mode you can't create new variables,
hence the DIM statements that pre-define26 working variables for you.

If you wish you can use more or fewer variables. The PAUSE statement

causes Debug Mode to be entered. Here's a sample session:

B: run calculator

BREAK: PROCEDURE Calculator

D:let x=12.5

D:print sin(pi/2)

.707106781

D:let y=exp(4+0.5)

D:print x,y

12.5 90.0171313

D:Q

B:

Don't forget that the Debug Mode PRINT command can use PRIRT USIRG

to produce formatted output (including hexadecimal).

By adding less than a dozen statements to the program, you can make

it store its variables on a disk file so they're remembered from session

to session. There are also many other enhancement possibilities.

Page 6-6

BASIC09 REFERERCE MANUAL

Data Types, Variables and Data Structures

WEY ARE THERE DIPPERENT DATA TYPES?

A computer program's primary function is to process data. The

performance of the computer, and even sometimes whether or nota computer

can handle a particular problem, depends on how the software stores data

in memory and operates on it. BASICO09 offers many possibilities for

organizing and manipulating data. :

Complicating matters somewhat is the fact that there are many kinds

of data. Some data are numbers used for counting or measuring. Another

example is textual data composed of letters, punctuation, etc., such as

your name. Seldom <can they be mixed (for example multiplication is

meaningless to anything but numbers), and they have different storage

size reqguirements. Even within the same general kind of data, it is

frequently advantageous to have different ways to represent data. For

example, BASIC09 1lets you choose from three different ways to represent

numbers - each having its own advantages and disadvantages. The decision

to use one depends entirely on the specific program you are writing., 1In

order for you to select the most appropriate way to store data variables,

BASIC09 provides five different basic data types. BASIC09 also lets you

create new customized data types based on combinations of the five basic

types. A good analogy is to consider the five basic types to be atoms,

and the new types you create as molecules. This is why the five basic

types are called atomicdata types.

DATA STRUCTURES

A data structure refers to storage for more than one data item under
a single name. Data structures are often the most practical and

convenient way to organize large amounts of similar data. The simplest

kind of- data structure is the array, which is a table of values. The

table has a single name, and the storage space for each individual value

is numbered. Arrays are created by DIM statements. For example, to

create an array having five storage spaces called "AGES", we can use the

statement:

DIR AGES(5): IRTEGER

*(5)" tells BASIC09 how many spaces to reserve., The ":IRTEGER"TM part

indicates the array's data type. To assign a value of 22 to the third

storage space in the array we can use the statement:

LET AGES(3)=22

As you shall see, BASICO09 lets you create complex arrays and even
arrays that have different data types combined.

Page 7-1

BASIC09 REFPEREKRCE MARUAL

Data Types, Variables and Data Structures

ATOMIC DATA TYPES

BASIC0S includes five atomic data types: BYTE, INTEGER, REAL,
STRING, and BOOLEAN. The first three types are used to represent
numbers., The STRING type is used to represent character data, and the
BOOLEAR type 1is used to represent the logical values of either TROUE or
FALSE. Arrays of any of these data types can be created using one, two,
or three dimensions. The table below gives an overview of the character-
istics of each type: '

BASIC09 ATOMIC DATA TYPE SUMMARY

Type Allowable Values Memory Requirement

BYTE Whole Numbers 0 to 255. One byte

IRTEGER Whole Numbers -32768 to 32767 Two bytes

REAL Floating Point +/- 1*10738 Five Bytes

STRIRG Letters, digits, punctuation One byte per char.

BOOLEAN True or False One byte

Why are there three different ways to represent numbers? Although

REAL numbers appear to be the most versatile because they have the
greatest range and are floating-point, arithmetic operations involving

them are relatively slow (by a factor of about four) compared to the
INTEGER or BYTE types. Thus using INTEGER values for loop counters,

indexing arrays, etc., can significantly speed up your programs. The BYTE
type 1is not appreciably faster than IRTEGER, but it conserves memory

space in some cases and is very useful as a building block for complex

data types in other cases. If you neglect to specify the type of a

variable, BASICO09 will automatically use the REAL type.

Type BYTE

BYTE variables hold integer wvalues in the range 0 through 255

(unsigned B-bit data) which are stored as a single byte. BYTE values are

always converted to another type (16-bit integer values and/or real

values) for computation, thus they have no speed advantage over other

numeric types. However, BYTE variables require only half the storage

used by integers, and 1/5 that used by reals. Attempting to store an
integer value outside the BYTE range to a BYTE variable will result in
storage of the least-significant 8-bits (the value modulo 256) without
error.

Page 7-2

BASIC09 REFERENCE MANUAL

Data Types, Variables and Data Structures

Type INTEGER

INTEGER variables consist of two bytes of storace and hold a numeric

value in the range -32768 through 32767 as signed l6-bit data. Decimal

points are not allowed. INTEGER constants may also be represented as

hexadecimal values in the range $0000 through S$FFFF to facilitate address

calculations. INTEGER values are printed without a decimal point.

INTEGER arithmetic is faster and requires less storage than REAL values.

Arithmetic which results in values outside the IRTEGER range does:

not <cause run-time errors but instead "wraps aroundTM modulo 65536; i.e.,

32767 + 1 yields - 32768. Division of an integer by another integer

yields an integer result, and any remainder is discarded. The programmer

should be aware that numeric comparisons made on values in the range

32767 through 65535 will actually be dealing with negative numbers, so it

may be desirable to limit such comparisons to tests for eguality or non-

equality. Additionally, certain functions (LARD, LNOT, LOR, LXOR) use

integer values but produce results on a non-numeric bit-by-bit basis.

Type REAL

The REAL type is the default type for undeclared variables. However,

a variable may be explicitly typed REAL (e.g., twopi:REAL) to improve a

program's internal documentation. REAL~-type values are always printed

with a decimal point, and only those constants which include a decimal

point are actually stored as REAL values.

REAL numbers are stored in 5 consecutive memory bytes. The first

byte is the (8-bit) exponent in binary two's-complement representation.

The next four bytes are the binary sign-and-magnitude representation of

the mantissa; the mantissa in the first 31 bits, and the sign of the

mantissa in the last (least-significant) bit of the last byte of the real

quantity. '

INTERNAL REPRESENTATION OF REAL KNUMBERS

Fmm e ——— tmm—————— tm——————— tmmm +

|exponent | mantissa [S| <- mant. sign
tomm————— tom—m————— tom—mm———— R tom +

byte: +0 +1 +2 +3 +4

The exponent .covers the range 2.938735877 * 10°-39 (2°-128) through

1.701411835 * 10738 (27127) as powers of 2, Operations which result in
values out of the representation range cause overflow or underflow errors
(which may be handled automatically by the OR ERROR command). The

mantissa covers the range from 0.5 through .9999999995 in steps of 27-31.
This means that REAL numbers can represent values on the number line
about .0000000005 apart. Operations which cause results between the

Page 7-3

BASIC09 REFERENCE MAKRUAL
Data Types, Variables and Data Structures

directly representable points are rounded to the nearest exactly

representable number.

Floating point arithmetic is inherently inexact, thus a sequence of
operations can produce a cumulative error. Proper rounding (as
implemented in BASIC09) reduces this effect but cannot eliminate it.

Programmers using comparisons on REAL quantities should use caution with
strict comparisons (i.e., =, or <>), since the exact desired value may
not occur during program execution.

Type STRING

A STRIRG 1is a variable-length sequence of characters or nil (an

empty STRIRG). A variable may be defined as a STRIRG either explicitly

(e.g., DIM title:STRIRG) or implicitly by appending the dollar-sign

character to the identifier (e.g., title$:= "My First Program."). The

default maximum length allocated to each string is 32 characters, but

each string may be dimensioned less (e.g., DIM A:STRIRG [4]) for memory
savings or more (e.g., DIN long:STRING [2880]) to allow long strings.
Notice that strings are inherently variable-length entities, and
dimensioning: the storage for a string only defines the maximum length

string which can be stored there. When a STRIKG value is assigned to a
STRIRG variable, the bytes composing the string are copied into the

variable storage byte-by-byte. The beginning of a string is always
character number one, and this is NOT affected by the BASEDO or BASEl

statements. Operations which result in strings too long to fit in the

dimensioned storage truncate the string on the right and no error is

generated.

Normally the internal representation of the string is hidden from

the user. A string is stored in a fixed-size storage area and is

represented by a sequence of bytes terminated by the value zero or by the

maximum length allotted to that STRIRG variable. Any remaining "unused"”

storage after the zero byte allows the stored string to expand and

contract during execution. The example below shows the internal storage

of a wvariable dimensioned as STRING[6] and assigned a valueof "SAM".

Notice the byte at +3 contains the zero string terminator, and the two

following bytes are not- used.

Page 7-4

BASIC09 REPERENCE MANUAL

Data Types, Variables and Data Structures

If the wvalue "ROBERT" is assigned to the wvariable. the zero byte

terminator is not needed because the STRING f£fills the storage exactly:

Type BOOLEAR

A BOOLEAN quantity has only two values: TRUE or FALSE. A variable

may be typed BOOLEAN (e.g., DIHM done_flag:BOOLEAR). BOOLEAN quantities

are stored as single byte values, but they may not be used for numeric
computation. BOOLEAN values print out as the character strings: "TRUE"

and "FALSE", BOOLEAN values result from comparisons (comparing two

compatible types), and are appropriate for logical flags and expressions

(result:=a ARD b ARD ¢). Do not confuse BOOLEAN operations ANRD, OR,
XOR, and ROT (which operate on the BOOLEAN values TRUE and FALSE) with

the logical functions LARD, LOR, LZOR, LROT (which use integer values to

produce results on a bit-by-bit basis). Attenpting to store a non-

BROOLEAN value to a BOOLEAN variable (or the reverse) will cause a run-
time error. .

AUTOMATIC TYPE CONVERSION

Expressions that mix numeric data types (BYTE, INTEGER, or REAL) are
automatically and temporarily converted to the largest type necessary to

retain accuracy. In addition, certain BASIC09 functions also perform
automatic type conversions as necessary. Thus, numeric quantities of

. mixed types may be used in most cases. Type-mismatch errors happen when
an expression includes types that cannot legally be mixed. These errors

are reported by the second compiler pass which automatically occurs when
you leave EDIT mode. Type conversions can take time so it is advisable
to use expressions containing all values of a single type wherever
possible. '

CORSTARTS

Constants are frequently used in program statements and in expres-
cions to assign values to variables. BASICO09 has rules that allow you to
specify constants that correspond to the five basic data types.

RUMERIC CORSTARTS

Numeric constants can be either type REAL or type INTEGER. If a
number constant includes a decimal point or uses the "E format”

BASICO09 REFERENCE MARUAL
Data Types, Variables and Data Structures

exponential form, it forces BASIC09 to store the number in REAL format

even if the number could have been stored in IRTEGER or BYTE format.
Thus if you specifically want to specify a REAL constant, use a decimal
point (for example 12.0). This is sometimes done if all other values in
an expression are of type REAL so BASIC09 does not have to do a time-
consuming type conversion at run-time. Numbers that do not have a decimal
point but are too large to be represented as integers are also stored in
REAL format. Here are some examples of legal real constants: :

1.0 9.8433218

-.01 -999.000099

100000000 5655.34532

1.95E+12 . =99999,.9E-33

Numbers that do not have a decimal point and are in the range of -

32768 to +32767 are treated as IRTEGER numbers. BASIC09 will also accept

integer constants as unsigned decimal numbers in the range 0 to 65535 or

in hexadecimal in the range 0 to SFFFF. Hex numbers must have a leading
dollar sign. BHere are some examples of integer constants:

12 ~3000 64000

$20 SFFFE §0
0 -12 -32768

BOOLEAR CONRSTARTS

The two legal boolean constants are "TRUE"TM and "FALSE". Example:

DIM flag, state: BOOLEAN

flag := TRUE

state := FALSE

STRIKG CORSTANTS

String constants consist of a sequence of any characters enclosed in

double quote characters. The binary value of each character byte can be 1

to 255, Double quote characters to be included in the string use two

characters in a row to represent one double quote. The null string "" is

important because it represents a string having no characters. It is

analogous to the numeric zero. Here are some examples of string

constants:

"BASICO09 is a new microcomputer language"”

"AABBCCDD"

" (a2 null string)
"An ""older man"" is wiser"

Page 7-6

BASIC09 REFERENRCE MANUAL .

Data Types, Variables and Data Structures

VARIABLES

Each BASIC09 variable 1is "local" to the procedure where it is

defined. Local means that it is only known to the program statements

within that procedure. You can use the same variable name in several

procedures and the variables will be completely independent. If you
specifically want other procedures to be able to share a variable, you
must use the RUN and PARARM statements to pass the variable when a
procedure is calling another procedure,

Storage for variables is allocated from the BASIC09 workspace when

the procedure is called. It is not possible to force a variable to

occupy a particular absolute address in memory. When the procedure is
exited, variable storage is given back and values stored in it are lost.

Procedures can call themselves (this is referred to as recursion) which
causes another separate storage space for variables to be allocated.

WARNIRGI! BASIC09 DOES ROT AUTOMATICALLY IRITIALIZE VARIABLES. WHEN A
PROCEDURE IS RON ALL VARIABLES, ARRAYS ARD STRUCTURES WILL EAVE RANDOM
VALUES. YOUR PROGRAM MUST ASSIGN ANY INITIAL VALUE IF REEDED. '

PARAMETER VARIABLES

Procedures may pass variables to other procedures. When this

occurs, the variables passed to the called procedure are referred to as
"parameters”, Parameters may be passed either "by reference", allowing
values to be returned from the called procedure, or "by value", which
protects the values in the calling procedure so that they may not be

changed by the procedure which is called.

Parameters are usually passed "by reference"; this is done by
enclosing the names of the variables to be sent to the called procedure

in parenthesis as part of the ROUN statement. The storage address of each

parameter variable is evaluated and sent to the called procedure which

then associates those addresses with names in a local PARAM statement.
The called procedure uses this storage as if it had been created locally
(although it may have a new name) and can change the values stored there.
Parameters passed by reference allow called procedures to return values

to their callers. -

Parameters may be passed "by value" by writing the value to be
passed as an expression which is evaluated at the time of the call.
Useful expression-generators that don't alter values are +0 for numbers

or +"" for strings. For example:

ROR inverse (x) passes "x" by reference

RUR inverse (x+0) passes "x" by value

RUR translate (word$) passes "word$" by reference

ROR translate (word$+"") passes "words$" by value

Page 7-7

BASIC09 REFPERENCE MANUAL
Data Types, Variables and Data Structunres

When parameters are passed by value, a temporary variable is created
when the expression is evaluated. The result is placed in a new
temporary storage. The address of this temporary storage is sent to the
called procedure. Therefore, the value actually given to the called

procedure is a copvy of the result, and the called procedure can't

accidentally (or otherwise) change the wvariable(s) in the calling

program,

Notice that expressions containing numeric constants will be either

of type INTEGER or of type REAL; there is no type BYTE constant. Thus,

BYTE-type .VARIABLES may be sent to a procedure as parameters but

expressions will be of types INTEGER or REAL. For example, a RON

statement may evaluate an IRTEGER as a parameter and send it to the

called procedure. If the called procedure is expecting a BYTE-type

variable, it will use only the high-order byte of the (two-byte) INTEGER

(which, if the value was intended to be in BYTE-range, will probably be
zero!). ‘

ARRAYS

The DIM statement can be used to create arrays of from 1 to 3

dimensions (a one~dimensional array is often called a ®"vector®TM, while a 2
or 3 dimensional array is called a “®matrix"TM). The sizes of each
dimension are defined when the array is typed (e.g., DIM
plot(24,80) :BYTE) by including the number of elements in each dimension.

Thus, a matrix dimensioned (24,80) has 24 rows (1-24) of 80 columns (1 -
80) when accessed in the default (BASE 1) mode. Programmers may elect to

access the elements of an array starting at zero (BASE 0), in which case
there are still 24 rows (now 0-23) and 80 columns (now 0-79). Arrays may

be composed of atomic data types, complex data types, or other arrays.

COHPLEX DATA TYPES

The TYPE statement can be used to define a new data type as a

"vectorTM (a one-dimensional array) of any atomic or previously-defined

types. For example: '

TIPE employee_rec = name:STRIRG; number(2) :IRTEGER; malesex:BOOLEAN

This structure differs from an array in that the various elements may be

of mixed types, and the elements are accessed by a field name instead of

an array index. For example:

DIM employee_file(250): employee_rec

employee_£ile(l).name := "Tex"

employee_file(20) .number (2) := 115

Page 7-8

BASIC09 REFERERCE MARUAL

Data Types, Variables and Data Structures

The complex structure gives the programmer the ability to store and
manipulate related values that are of many types, to create "new" types
in addition to the five atomic data types, or to create data structures

of unusual "shape" or size. Additionally, the position of the desired
element in complex-type storage is known and defined at "compile time"

and need not be calculated at "run time". Therefore, complex structure
accesses may be slightly faster than array accesses. The elementsof a

complex structure may be copied to another similar structure using a

single assignment operator (i.e., ":="). An entire structure may be

written to or read from mass storage as a single entity (e.g., POT £2,

employee_file). Arrays or complex structures may be elements of

subsequent complex structures or arrays.

Page 7-9

BASIC0S REFPERENCE MANUAL
Data Types, Variables and Data Structures

This Page Intentionally Blank

Page 7-10

BASIC09 REFERENCE MANUAL

Expressions, Operators and Punctions

EVALUATION OF EXPRESSIONS

Many BASIC09 statements evaluate expressions. The result of an

evaluation is just a value of some atomic type (e.g. REAL, INTEGER,

STRIRG, or BOOLEAN). The expression itself may consist of values and

operators, for example; the expression "5+45" results in an integer with a

value of ten.

A "value" can be a constant value (e.g., 5.0 , 5 , "5" , or TRUE), a

variable name, or a function (e.g., SIN(x)) which "returns" the result

as a value. An operator combines values (typically, those adjacent to

the operator) and also returns a result.

In the course of evaluating an expression, each value is copied onto

an “"expression stack"TM where functions and operators take their input

values and return results. If (as is often the case) the expression is

to be used in an assignment statement, only when the result of the entire

expression has been found 1is the assignment made. This allows the

variable which is being modified (assigned to) to be one of the values in

the expression. The same principles apply for numeric, string, and
boolean operators. These principles make assignment statements such as

"X=X+1" legal in all <cases even though it would not make sense in-a

mathematical context. :

Any expression will evaluate to one of the five "atomic" data types,

i.e., real, integer, byte, boolean, or string. This does not mean,

however, that all the operators and operands in expressions have to be of

an identical type. Often types are mixed in expressions because the

RESULT of some operator or function has a different type than its

operands. An example is the "less than" operator. Here's an example:

24 < 100

The "<" operator compares two numeric operands. The result of the
comparison is of type BOOLEAN; in this case, the value TRUE.

BASIC09 allows intermixing of the three numeric types because it
performs automatic type conversion of operands. If different types are
used in an expression, the T"resultTM will be the same type as the

operand(s) having the largest representation. As a rule, any numeric
tvpe operand may be used in a expression that is expected to produce a

result of type REAL., Expressions that must produce byte or integer
results must evaluate to a value that is small enough to fit the
representation. BASICO09 has a complete set of functions that can perform
compatible type conversion. Type-mismatch errors are reported by the
second compiler pass when leaving Edit mode.

CPERATORS

Operators: take two operands (except negation) and cause some

operation to be performed producing a result, which is generally the same

Page 8-1

BASIC0S REPERENCE MARUAL

Expressions, Operators and Functions

type as the operands (except comparisons). The table below lists the
operators available and the types they accept and produce. "NUMERIC"

refers to either BYTE, IRTEGER, or REAL types.

BASIC09 EXPRESSION OPERATORS

Operétor Function Operand Type Result Type

- Negation NUMERIC NUMERIC
© or ** Exponentiation NUMERIC NUMERIC

* Multiplication NUMERIC NUMERIC

/ Division NUMERIC NUMERIC

+ Addition NUMERIC NUMERIC

- Subtraction NUMERIC NUMERIC

ROT Logical Negation BOOLEAR BOOLEAN

AND Logical ARD BOOLEAN BOOLEAR

OR Logical OR BOOLEAN BOOLEAN

XOR Logical EXCLUSIVE OR BOOLEAR BOOLEAR

+ Concatenation STRIRG STRIRG

= Equal to ANY BOOLEAR
<> or X< Not egqual to ANY BOOLEAN

< Less than NUMERIC, STRING* BOOLEAN
<= or =< Less than or Equal NUMERIC, STRING* BOOLEAN

> Greater than NUMERIC, STRING* BOOLEAR

>= or => Greater than or Egqual NUMERIC, STRIRG* BOOLEAN

* When comparing strings, the ASCII collating segquence is used, so that
0 <1K <9 <AKLB eee < Z2 < a<hb

Page 8-2

<2z

BASIC09 REFERENCE MANUAL

Expressions, Operators and Functions

OPERATOR PRECEDENCE

Operators have "precedence" which means they are evaluated in a

specific order (i.e., multiplications performed before addition).

Parentheses can be used to override natural precedence, however,

extraneous parentheses may be removed by the conmpiler. The legal

operators are listed below, in precedence order from highest to lowest.

Highest Precedence

NOT -({negate)

- * %

* /

+ -

> < <> = >= {=

AND

OR XOR

Lowest precedence

Operators of equal precedence are shown on the same line, and are
evaluated left to right in expressions. The only exception to this rule
is exponentiation, which is evaluated right to left. Raising a negative
number to a power is not legal in BASICOS.

In the examples below, BASIC09 expressions on the left will be
evaluated as indicated on the right. Either form may be entered, but the
simpler form on the left will always be generated by the decompiler.

BASIC09 Representation Equivalent form

a:= b+c**2/4 a:= b+((c**2)/4)
as= b>c ARD d>e OR c=e a:= ((b>c) AND (d>e)) OR (c=e)
a:= (b+c+d)/e a:= ((b+c)+d)/e
a:= b**c**d/e a:= (b**(c**d))/e
as= —(b)**2 as= (-b)**2 :
asb=c a:= (b=c) (returns BOOLEAR value)

Page 8-3

BASICO09 REFPERENCE MANUAL

Expressions, Operators and Punctions

PURCTIONS

Functions take one or more arguments enclosed in parentheses,

perform some operation, and return a value. They may be used as operands

in expressions. Functions expect that the arguments passed to them will

be expressions, constants, or variables of a certain type and will return
a result of a certain type. Giving a function an argument of an

incompatible type will result in an error.

In the descriptions of functions that follow, the following notation

is used to describe the type required for the parameter expressions:

<num> means any numeric-result expressions

{str> means any string-result expression

<int> means any integer-result expression

The functions below return REAL results. Accuracy of transcedental
functions is 8+ decimal digits. 2Angles can be either degrees or radians

(see DEG/RAD statement descriptions).

SIR(<num>) trigonometric sine of <num>

CbS((num>) trigonometric cosine of <num>.

TAN (<num>) trigonometric tangent of <num)>

ASK(<num>) trigonometric arcsine of <num>

ACS (<num>) trigonometric arcosine of -<num>

ATN(<num>) trigonometric arctangent of <num)

LOG (<num>) natural logarithm (base e) of <num>

LOG10 (<num>) logarithm (base 10) of <num>

EXP(<num>) e (2.71828183) raised to the power <num>, which must
be a positive number.

PLOAT (<num>) <num> converted to type REAL (from BYTE or IRTEGER)

IKT (<num>) largest whole number less than or egual to <num)>

PI the constant 3.14159265

SQR(<num>) sqguare root of <num>, which must be positive

SQRT (<num>) square root of <num>; same as SQR

Page B-4

BASIC09 REFERENCE MANUAL

Expressions, Operators and Punctions

RND (<num>) if <num>=0 returns random x, 0 <= x < 1

if <num>>0 returns random x, 0 <= x < <num :

if <num><0 use ABS(<num>) as new random number seed

The following functions can return ANY numeric type, depending on the
type of the input parameter(s).

ABS (<num>) absolute value of <num>

SGR(<num>) signum of <num>: -1 if <num> < 0, 0 if <num> = 0, or

1l if <num> > 0

SQ(<num>) square <num>

VAL (<str>) convert type string to type numeric

The following functions return results of type iNTEGER or BYTE

FIX (<num>) round REAL <num> and convert to type INTEGER

MOD (<numl>, <num2>)

modulus (remainder) function, <numl> mod <num2>

ADDR(<name>) absolute memory address of variable, array,

or structure named <name>.

SIZE(<name>) storage size in bytes of variable, array,

or structure named <name>.

ERR error code of most recent error, automatically

resets to zero when referenced

PEEK (<int>) value of byte at memory address <int>

POS current character position of PRINT buffer

ASC(<str>) numeric value of first character of <str>

LER(<str>) length of string <str>

SUBSTR(<strl>,<str2>) _

: substring search: returns starting position of first

occurrence of <strl> in <str2>, or 0 if not found.

BASIC09 REFERENCE MANUAL
xpressions, Operators and Punctions

The following functions perform bit-by-bit logical operations on integer
or byte data types and return integer results. They should ROT be
confused with the BOOLEAR-type operators.

LARD (<num>, <num>) Logical ARD

LOR (<num>, <num>) Logical OR

LXOR (<num>, <num>>) Logical EXCLUSIVE OR

LROT (<num>) Logical ROT

These functions return a result of type STRING:

CHRS (<int>) ASCII char. equivalent of <int>

DATES date and ‘time, format: "yy/mm/dd hh:mm:ss"

LEPTS (<str>,<int>) 1leftmost <int> characters of <str>

RIGHTS (<str>,<int>) rightmost <int> characters of <str>

MIDS (<strd>,<intld>,<int2>
middle <int2> characters of <str> starting at
character position <intl>

STRS (<num>) converts numeric type <num> to displayable
characters of type STRING representing the
number converted. :

TRIMS ({str>) <str> with trailing spaces removed

The following functions return BOOLEAN values:

TRUE always returns TROE

PALSE always returns PALSE

EOP (#<num>) End of File test on disk file path <num),

returns TRUE if end-of-file condition.

Page B8-6

BASIC09 REFERENRCE MANUAL

Program Statements and Structure

PROGRAM STRUCTURE

A BASICO0S program can be written as a single procedure, or it may be

divided into a number of smaller procedures, each of which is designed to-

perform a specific function. Single procedure programs may be useful

when the program is relatively small. However, large complex programs

are generally much easier to develop, test, and maintain when the program

is divided into several procedures. Generally, the programmer will

create a main routine which will then call other BASIC09 procedures to

perform specific functions as subroutines. These BASIC09 procedures may

in turn call other BASIC09 procedures in the same manner. These

techniques reflect sound structured programming practice.

A procedure consists of any number of program statement lines. Each

line can have an optional 1line number, and more than one program

statement can be put on the same line if separated by "\" (<clear></>)

characters. For example, the following statements are equivalent:

GOSUB 550 \ PRIRT X,Y \ RETURK GOSUB 550

PRINT X,Y

RETURR

While the above statements are functionally equivalent, the second is

generally considered preferable when using BASIC09 since the first method

runs no faster and tends to hide the structure of the program. The

number of characters on a given line is dependent on the content of the

line. In general, lines should be limited to 128 characters or less, to

avoid the generation of errors when BASIC09 decompiles the I-Code for

listing purposes or at run time.

Program readability is improved if all variables are declared with

DIM statements at the beginning of the procedure, but this is not

mandatory. The program can be terminated with END or STOP statements,

which are also optional. :

LINE RUMBERS

Line numbers are optional. They can be any integer number in the

range of 1 to 32767. Line numbers should only be used where absolutely

necessary (such as with GOSUB) because they make programs harder to

understand, use additional memory space, and increase compile time

considerably. Line numbers are local to procedures, i.e., the same line

number can be used in different procedures without conflict,

Page °-1

BASIC09 REFPERERCE MANUAL

Program Statements and Structure

ASSIGNMERT STATEMENTS

Assignment statements are used for computation or initialization of
variables,

LET Statement

Syntax: [LET] <var> := <expr>

[LET] <var> = <expr>

[LET] <struct)> := <struct>

[LET] <struct> = <struct>

LET evaluates an expression and stores the result in <var> which may
be a simple variable or data structure element. The result of the
expression must be of the same or compatible type as <var>. BASIC09 will
accept either "=" or ":=" as an assignment operator, however, the second
form (:=) is preferred because it distinguishes the assignment

operation from a comparison (the test for equality). The ":=" operator
is the same as used in PASCAL.

Another usage of the assignment statement is to copy the entire
value of an array or complex data structure to another array or complex
data structure. The data structures do not have to have the same type or
"shape". The only restriction is that the size of the destination
structure be the same or larger than the source structure. 1In fact this
type of assignment can be used to perform unusual type conversions. For
example, a string variable of 80 characters can be copied to a one-
dimensiocnal array of 80 bytes.

Examples:

A := 0.1

value := temp/sin(x)

DIM arrayl(100), array2(100)

arrayl := array2

LET AUTHORS := FIRST_NAMES + LAST_NAMES

DIM truth,lie:BOOLEAN

lie := 100 < 1
truth := ROT lie

count = total-adjustment

matrix(2).coefficient(n+2) := matrix(l).coefficient(n)

Page 9-2

BASICO09 REFERENCE MARUAL

- Program Statements and Structure

POKE Statement

Syntax: PORKE <int expr> , <byte expr>

PORKE allows a program to store data at a specific memory address.
The first expression is used as the absolute address to store the type
BYTE result of the second expression. POKE can alter any memory address,

so care should be taken when using it. ‘

Examples:

POKE ADDR(buffer)+5,ASC("A")

POKE 1200,14

POKE $1C00,SFF

POKE pointer,PEEK (pointer+l)

(* alternative to: alphabet$:= "ABCDEFGHIJKLMNOPQRSTUVWXYZ" *)

POR i=0 to 25

POKE ADDR(alphabet$)+i,$40+i

NEXT i

POKE ADDR(alphabet$)+26,SFF

Page 9-3

BASIC09 REFERENCE MARUAL

Program Statements and Structure

CORTROL STATEMENTS

Control statements affect the (usually) sequential execution of

program statements, They are used to construct loops or make decisions
that alter program flow. BASIC09 provides a selection of looping

statement forms that allow any kind of loop to be constructed using sound
structured programming style.

IF Statement: Type 1

Syntax: IF <bool expr> THEN <line #>

This form of the if statement causes execution to be transferred to

the statement having the 1line number specified if the result of the
expression is TRUE, otherwise the next seguential statement is executed.
For Example:

IF payment < balance then 400

I? Statement: Type 2

Syntax: IF <bool expr> THEN <statements>

[ELSE <statements>]

ERDIP

This kind of IF structure evaluates the expression to a BOOLEAR

value, If the result is TRUE the statement(s) immediately following the
THEN are executed. If an ELSE clause exists, statements between the ELSE
and ERDIF are skipped, IP the expression evaluated to FALSE control is
transferred to the first statement following the ELSE, if present, or

otherwise to the statement following the ENDIF.

Examples:

IF a < b THENR

PRIFRT "a is less than b"

PRINT "a:";a;" b:";b

ERDIFP

IFP a < b THER

PRIRT "a is less than b"

ELSE

IP a=b THER

PRIRT *“a eguals b"

ELSE

PRIRT "a is greater than b"

ERDIF

ERDIP

Page 9-4

BASICO0S REFERENCE MARUAL

Program Statements and Structure

POR/NEXT Statement

Syntax: POR <var> = <expr> TO <expr> [STEP <expr>]

REXT <var>

Creates a loop that usually executes a given number of times while

automatically increasing or decreasing a specified counter variable. The

first expression 1is evaluated and the result stored in <var> which nust

be a simple integer or real variable. The second expression is evaluated

and stored in a temporary variable. If the STEP clause is used, its

expression is evaluated and used as the loop increment. If the increment

is negative, the loop will count DOWN,

The "body" of the 1loop (i.e. statements between the "POR" and

"NEXT") is executed until the next variable(a counter) is larger than the

terminating expression value. For negative STEP values, the loop will

execute until the loop counter is less than the termination value. If

the initial value of <var> is beyond the terminating value, the body of

the loop is never executed. It is legal to jump out of POR/NEXT loops.
There is no limit to the nesting of POR/REZT loops.

Examples:

FOR counter = 1 to 100 STEP .5

PRIRNT counter

REXT counter

POR var = min-1 TO min+max STEP increment-adjustment

PRIRNT var

REXT var

FPOR x = 1000 to 1 STEP -1
PRIRT x

NEXT x

Page 9-5

BASIC09 REFERENCE MANUAL
Program Statements and Structure

WEILE,..DO Statement

Syntax: WHILE <bool expr> DO

ERDWEILE

This is a 1loop construct with the test at the "top" of the loop.
Statements within the loop are executed as long as <bool expr> is TRUE,
The. body of the 1loop will not be executed if the boolean expression
evaluates to FALSE when first executed. ’

Examples:

WHILE a<b DO is equivalent to - 100 IP a<b THEN 500
PRIRT a PRIRT a
a := a+l a := a+l

ERDWHILE GOTO 100

500 REM

DIM yes:BOOLEAR

yes=TRUE

WHILE yes DO

PRIRT “yes! *;

yes := POS<50

ERDRHILE

REM reverse the letters in word$

backward$:= ""

IRPUT word$

WHILE LER(wordS) > 0 DO)
backward$:= backward$ + RIGHTS(word$,l)
word$:= LEPTS$ (word$,LER(word$)-1)

ERDWHILE

word$:= backward$
PRIRT word$

Page 9-6

BASIC09 REPERENCE MANRUAL

Program Statements and Structure

- REPEAT..UNTIL Statement

Syntax: REPEAT

ORTIL <bool expr>

This is a 1loop that has its test at the bottom of the loop. The

statement(s) within the loop are executed until the result of <bool expr>

is TRUE. The body of the loop is always executed at least one time.-

Examples:

x =0 is the same as x=0

REPEAT 100 PRIRT x
PRINT x =x+1

x=x+1 IP X <= 10 then 100

UNRTIL x>10

(* compute factorial: n! ¥*)

temp := 1.

INPUT "Factorial of what number? ",n

REPEAT

temp := temp * n

n := n-1

UNTIL n <= 1.0

PRINT "The factorial is "; temp

Page 9-7

BASIC09 REFERENCE MANUAIL

Program Statements and Structnre

LOOP and ENDLOOP Statements

Syntax: LOOP

ENDLOOP

EXITIF and ENDEXIT Statements

Syntax: EXITIF <bool expr> THEN <statements>

ERDEXIT

These related types of statements can be used to construct loops

with tests located any place in the body of the loop. The LOOP and
ERDLOOP statements define the body of the loop. EXITIF clauses can be

inserted anywhere inside the loop to leave the loop if the result of its

test is true. Note that if there is no EXITIF clause you will create a

loop that never ends.

The EXITIF clause evaluates an expression to a boolean result. 1If
the result is false, the statement following the ERDEXIT is executed
next. Otherwise, the statement(s) between the EXITIF and ENDEXIT are

executed, then control is transferred to the statement following the body
of the 1loop. This exit clause is often used to perform some specific
function upon termination of the loop which depends on where the loop
terminated.

EXITIP statements are almost always used when LOOP...ERDLOOP is
used, but they can also be useful in ANY type of BASIC09 loop construct

(e.g., FOR/REXT, REPEAT... URTIL, etc.). Examples:

LOOP is equivalent to 100 REM top of loop

count=count+l count=count+l

EXITIF count >100 THEN IF COUNT <= 100 then 200
done = TRUE done = TRUE

ENDEXIT GOTO 300

PRINT count 200 PRIRT count

x = count/2 X = count/2

ERDLOOP GOTO 100

300 REM out of loop

IRPUT x,y

LOOP

PRIRT

EXITIF x < 0 THER

PRIRT "x became zero first"

ERDEXIT

X = x-1

EZITIF y < 0 THEN PRIRT "y became zero first"

ERDEXIT

y = y-1

ERDLOOP

Page 5-8

BASIC09 REFERENCE HRARUAL

Program Statements and Structure

GOTO Statement

Syntax: GOTO <line #>

The GOTO unconditionally transfers execution flow to the line having

the specified number. Note that the line number is a constant, not an

expression or a variable. ' _

Example:

GOTO 1000

GOSUB/RETURN Statements

Syntax: GOSUB <line #>

RETURN

The GOSUB statement transfers program execution to a subroutine

starting at the specified line number. The subroutine is executed until

a RETORN statement is encountered which causes execution to resume at the

statement following the calling GOSUB. Subroutines may be "nested" to

any depth.

Example:

FOR n := 1 to 10

x := SIR(n)

GOSUB 100

NREXT n

FORm := 1 TO 10

X := COS(m)

GOSUB 100

NEXT m

STOP

100 x := x/2
PRIRT x

RETURR

Page 9-9

BASIC09 REFERENCE MARUAL

Program Statements and Structure

ON GOTO Statement

OR GOSUB Statement

Syntax: ON <int expr> GOTO <line %> {,<line #>}

OR <int expr> GOSUB <line &> {,<line #>}

These statements evaluate an integer expression and use the result

to 'select a corresponding line number from an ordered list. Control is’
then transferred to that 1line number unconditionally in ON GOTO

statements or as a subroutine in OR GOSUB statements. These statements
are similar to CASE statements in other languages. '

The expression must evaluate to a positive INTEGER-type result

having a value of between 1 and N; N being the highest line number in the

list. N is limited by input line length and the number of digits in each

line number. The best case limit for N is 60. If the expression has any

other result, no step is selected and the next sequential statement is

executed.

Example:

(* spell out the digits 0 to 9 *)

DIM digit:INTEGER

AS="one digit only, please"

IRPOT "type in a digit"; digit

OR digit+l GOSUOB 10,11,12,13,14,15,16,17,18,19

PRIKRT AS

STOP

(* names of digits ¥*)

10 AS$:= "ZERO"

RETURN

1l AS := "“ONE"

RETURN

12 A8 := "TWO"
RETURR

13 A$:= "“THREE"

RETURN

14 AS := "FOUR"

RETURK

15 A$:= “FIVE"

RETORK

16 AS := "SIX"

RETURR

17 AS$:= "SEVEN"

RETURR

18 AS$:= "EIGHT"

RETORR

19 A$:= "NINE"
RETURR

Page 9-10

BASIC09 REFERENCE MARUAL

Program Statements and Structure

ON ERROR GOTO Statement

Syntax: ON ERROR [GOTO <line #> }

This statement sets a "trap"TM that transfers control to the line
number given when a non-fatal run-time error occurs. If no ON ERROR GOTO
has been executed in a procedure before an error occurs, the procedure
will stop and enter DEBUG mode. The error trap can be turned off by
executing ON ERROR without a GOTO. ‘

This statement is often used in conjunction with the ERR function

which returns the specific error code, and the ERROR statement which
artificially generates “errors", Note: the ERR function automatically
resets to zero any time it is called.

Example:

(* List a file *)

DIM path,errnum: INRTEGER, name: STRING[45], line: STRING[80]

ON ERROR GOTO 10

IRPOT "File name? "; name

OPER #path,name:READ

LOOP

READ #path, line

PRIRT line

ERDLOOP

10 errnum=ERR

IP errnum := 211 THER

(* end-of~-file *)

PRIRT "Listing complete."

CLOSE #path

ERD

ELSE

(* other errors *)

PRINT "Error number "; errnum

END

ENDIF

Page 9-11

BASIC09 REFERERCE MARUAL

Program Statements and Structure

RON Statement

Syntax: ROR <proc name> [(<param> {,<param>})]

or: RON <string var> [(<param> {,<param>})]}

This statement calls a procedure by name; when that procedure ends,

control will pass to the next statement after the RUN. It is most often
used to call a procedure inside the workspace, but it can also be used to’

call a previously compiled (by the PACK command) procedure or a 6809

machine language procedure outside the workspace. The name can be

optionally taken from a string variable.

Parameter Passing

The RUN statement can include a list of parameters enclosed in

parentheses to be passed to the called procedure. The called procedure

must have PARAM statements of the same size and order to match the

parameters passed to it by the calling procedure.

The parameters can be variables or constants, or the names of entire

arrays or data structures. They can be of any type (EXCEPT variables of

type BYTE, but BYTE arrays are O.K.). If a parameter is a constant or

expression, it is passed "by value", i.e., it is evaluated and placed in
a2 temporary storage location and the address of the temporary storage is
passed to the «called procedure, Parameters passed by value can be
changed by the receiving procedure, but the changes are not reflected in

the calling procedure.

If the parameter is the name of a variable, array, or data structure

it is passed by "reference”, i.e., the address of that storage is sent

to the called procedure and thus the value in that storage may be changed

by the receiving procedure. These changes ARE reflected in the calling

procedure.

Calling External Procedures

If the procedure named by the RURN statement can't be found in the

workspace, BASIC09 will check to see if it was loaded by 05-9 outside the

workspace. If it isn't found there, BASICO09 will try to find a disk file

having the same name in the current execution directory, load it, and run

it. In either case, BASIC09 checks to see if the called procedure is a

BASIC09 I-code module or a 6809 machine language module and executes it

accordingly. If it is a 6809 machine language module, BASICO0S executes a

JSR instruction to its entry point and the module is executed as 6809
native code. The machine language routine can return to the original

calling procedure by executing an RTS instruction. The diagram on the
next page shows what the stack frame passed to machine-language

subroutines looks like.

Page 9-12

BASIC09 REPERENCE MARUAL

Program Statements and Structure

After an external procedure has been called but is no longer needed,

the KILL statement should be used to get rid of it so its memory space

can be used for other purposes.

STACK FRAME PASSED TO MACHIRE LARGUAGE PROCEDODRES

~

higher addresses

| size of lst param [
+ = = = = = = -4 4 bytes

| addr of 1lst param |

|

I
——— -—

| " |
| parameter count | 2 bytes

| | |

+ === == i ===
[| |
| return address] 2 bytes

| | I
B + - <- 6809 Stack Pointer

“Register value

Machine language modules return error status by setting the "C" bit

of the MPU condition codes register and by setting the B register to the
appropriate error code. For an example of a machine language subroutine

("INKEY"), see Appendix A.

Example of use of the RUN statement:

PROCEDURE trig_table

numl := 0 \ num2 := 0

REPEAT

ROUR display(numl,SIR(numl))

ROUR display(num2,COS(num2))

PRIRT

UNRTIL numl > 1

ERD

PROCEDURE display

PARAM passed,funcval

Page 9-13

BASIC09 REFERENCE MARUAL
Program Statements and Structure

PRIRT passed;":";funcval,

passed := passed + 0.1

ERD

KILL Statement

Syntax: KILL <str expr>

This statement is used to "unlink" an external procedure, possibly
returning . system memory, and remove it from BASIC09's procedure
directory. If the procedure is inside the workspace, nothing happens and
no error is generated. KILL can be. used along with auto-loading PACKed
procedures as an alternative to CHAIR when program overlay is desired.

WARNINGS:

1. It can be fatal to 0S-9 to KILL a procedure that is still "active®.

2. When used together with a RUN statement, both statements MUST use the
same string variable which contains the name of the procedure. See first
example below:

Examples:

LET procname$="average"

RON procname$

KILL procname$

IRPUT *"Which test do you want to run? ",test$
RUN test$

RILL test$

Page S-14

BASIC0S REFERENCE HANUAL

Program Statements and Structure

CHAIN Statement

Syntax: CBAIR <str expr>

The CHAIN statement performs an 0S-9 "chain" operation on the SHELL,

passing the specified string as an argument. CBAIN causes BASIC09 to be

exited, unlinked, and its memory to be returnedto 0S-9. The string

should evaluate to the name of an executable module {(such as BASIC09),
passing parameters if appropriate.

CHAIN can begin execution of any module, not just BASIC09. It

executes the module indirectly through the Shell in order to take

advantage of Shell's parameter processing, which has the side-effectof

leaving an extra "incarnationTM of the Shell active. Programs that

repeatedly chain to each other will eventually find all of memory filled

with waiting Shells. This can be prevented by using the "ex" option of

Shell. Consult the O0S-9 User's Guide for more details on the

capabilities of the Shell.

Files that are open when a CHAIN occurs are not closed. However,
the 0S-9 Fork call will only pass the standard 1/0 paths (0,1,2) to a

child process. Therefore, if it is necessary to pass an open path to

another program segment, the "ex"TM option of Shell must be used.

Examples:

CHAIN "“ex BASIC0Y9 menu”

CEAIN "BASICO09 #£#10k sort (""datafileTM",""tempfile"TM)"

CHAIN "DIR /DO"

CEAIR "Dir; Echo *** Copying Directory ***; ex basic09 copydir"

Page 9-15

BASIC09 REFERENCE HMANUAL

Program Statements and Structure

SHELL Statement

Syntax: SHELL <str expr>

SHELL allows BASICO09 programs to run any OS-9 command or program. SHELL

gives access to virtually any 0S-9 function including multiprogramming,
utility commands, terminal and I/0 control, and more. Consult the "0S-9
User's Manual" for a detailed discussion of 0S5-9 standard commands.

The SHELL statement requests O05-9 to create a new process, initially

executing the "shell"TM which is the 0S-9 command interpreter. The shell

can then «call any program in the system (subject to the normal security

functions). The string expression is evaluated and passed to the shell

to be executed as a command line (just as if it had been typed in). 1If

the string is null, BASIC09 is temporarily suspended and the shell

process displays prompts and accepts commands in its normal manner. When

the shell process terminates, BASIC09 becomes active again and resumes

execution at the statement following the SHELL statement.

Here are a few examples of using the shell from BASICO09:

SHELL "copy filel file2" sequential execution

SHELL "copy filel file2&" concurrent execution

SHELL “"edit document” calling text editor

SHELL "asm source o=obj ! spl &" concurrent assembly

Page 9-16

BASIC09 REPERENRCE MANUAL

Program Statements and Structure

ERD Statement

Syntax: ERD [<output list>]

ERD ends execution of the procedure and returns to the calling procedure

or to BASIC09 command mode if it was the highest level procedure. If an

output 1list is given, END also works the same as a PRIRT statement. ERD

is an executable statement and can be used several times in the same
procedure, ERD is optional; it 1is not required at the "bottom"TM of a

procedure,

Examples:

ERD

ERD "I have finished execution"

Page 9-17

BASIC09 REFERERCE HMANUAL

Program Statements and Structure

STOP Statement

Syntax: STOP [<output list>]

STOP immediately terminates execution of all procedures and returns to
the Command Mode. If an output list is given, it also works like a PRINT
statement,

BYE Statement

Syntax: BYE

BYE ends execution of the procedure and terminates BASIC09. Any open
files are closed, and any unsaved procedures or data in the workspace
will be lost. BYE is especially useful for creating PACKed programs
and/or programs to be called from 0S-9 procedure files.

WARNIRG: BYE CAUSES BASIC0S9 TO ABORT, 1IT SHOULD OKLY BE USED IF THE

PROGRAM HAS BEENR SAVED BEFPORE IT IS TESTED!

ERROR Statement

Syntax: ERROR(<int expr>)

ERROR generates an error having the error code specified by the result of
evaluation of the expression. ERROR is often used for testing error
routines. For details on error handlingsee the OR ERROR GOTO statement

description. .

PAUSE Statement

Syntax: PAUSE [<output list>]

PAUSE suspends execution of the procedure and causes BASIC09 to enter
Debug Mode. If an output 1list 4is given, it also works like a PRIRT

Statement.

<output> BREAK IN PROCEDURE <procedure name>

The Debug Mode "CONT" command can be used to resume procedure execution

at the following statement.

Examples:

PAUSE

PAUSE now outside main loop

Page S5-18

BASIC09 REFERERCE MARUAL

Program Statements and Structure

CED and CEX Statements

Syntax: CHD <str expr>

CHX <str expr>

These statements change the current default Data or Execution

directories, respectively. The string must specify the pathlist of a

file which has the DIR attribute. For more information on the 0S-9

directory structure, consult the "0S-9 User's Manual".

DEG and RAD Statements

Syntax: DEG

RAD

These statements set the procedure's state flag to assume angles stated

in degrees or radians in SIN, COS, TAN, ACS, ASN and ATN functions. This

flag applies only to the currently active procedure. The default state

is radians.

BASE 0 and BASE 1 Statements

Syntax: BASE 0

BASE 1

These statements indicate whether a particular procedure's lowest array

or data structure index (subscript) is zero or one. The default is one.

These statements do not affect the string operations (e.g., MID§, RIGHTS,

OR LEFTS) where the beginning character of a string is always index one.

TRON and TROFF Statements

Syntax: TRON

TROFF

These statements turn the trace mode on or off and are useful for
debugging. When trace mode is turned on, each statement is decompiled
and printed before execution. Also, the result of each expression
evaluation is printed as it occurs.

BASIC0S REFERENCE MANUAL
Program Statements and Structare

Comment Statements

Syntax: REM <chars>

(* <chars> [*])

These statements are used to put comments in programs. The second form
of the statement is for compatibility with PASCAL programs, Comments are
retained in the I-code but are removed by the PACK compile command., The"
"!" character can be typed in place of the keyword REM when editing
programs. The compiler trims away extra spaces following REM to conserve
memory space.

Examples:

REM this is a comment

(* This is also a comment *)

(* This is another kind of comment

Page 9-20

BASIC09 REPERENCE MARUAL

Program Statements and Structure

DECLARATIVE STATEMENTS

The DIH, PARAM, and TYPE statements are called declarative

Statements because they are used to define and/or declare variables,

arrays, and complex data structures. The DIM and PARAM statements are

almost identical, the difference being that DIM statements are used to

declare storage used exclusively within the procedure,'and the PARAH

statement is used to declare variables received from another calling

procedure.

When do you need to use the DIM statement? You don't need to for

simple variables of type REAL, because this is the default format for

undeclared variables. You also don't need to for 32-character STRING

type variables (any name ending with a "$" is automatically assigned this

type). Even though you don't have to declare variables in these two

cases, you may want to anyway to improve you program's internal

documentation. Those things you must declare are:

l. Any simple variables of type BYTE, INTEGER, or BOOLEAR,

2. Any simple STRIRG variables shorter or longer than 32

characters.

3. Arrays of any type.

4., Complex data structures of any type.

The TYPE statement does not really create variable storage. 1Its

purpose is to describe a pew data structure type that can be used in DIM

or PARAM statements in addition to the five atomic data types built-in to
BASICOS, Therefore, the TYPE statement is only used in programs that

utilize complex data structures.

Page 9-21

BASIC0S9 REFERERCE MANUAL

Program Statements and Structure

DIM Statement

Syntax DIM <decl seqg> {; <decl seq> }

<decl seg> := <decl> {, <decl> } [: <type>]
<decl> := <name> [<subscript>]

<{subscr> := (<const> [,<const> [,<const>]])

<type> := BYTE | IRTEGER | REAL | BOOLEAR |
STRING | STRIRG <max len> | <user defined type>

<user def> := user defined by TYPE statement

The DIM statement is used to declare simple variables, arrays, or complex
data structures of the five atomic types or any user-defined type.

During compilation BASIC09 assigns storage required for all variables

declared in DIM statements.

Declaring Simple Variables

Simple variables are declared by using the variable name in a DIM

statement without a subscript. 1If variables are not explicitly declared,

they are automatically made type REAL or type STRING([32] if the name ends

with a "$" character. Therefore all simple variables of other types must
be explicitly declared. For example:

DIM logical :BOOLEAR

Several variables can be declared in sequence with a :<type> following a
group of the same type:

DIM a,b,c: STRIRG

In addition, several different types can be declared in a single DIK
statement by using a ";" to separate different types:

DIE a,b,c:IRTEGER; n,m:decimal; x,Yy,z:BOOLEAN

In this example a, b, and ¢ are type INTFEGER, n and m are type "decimal"
(2 user-defined type), and x, y, and z are type BOOLEAN., String
variables are declared the same way except that an optional maximum
string 1length can be specified. 1If a length is not explicitly given, 32

characters are assumed:

DIM name:STRING[40]; address,city:STRIRG; zip:REAL

In this case "name"TM is a string variable of 40 characters maximum,
"address" and “"city" are string variables of 32 characters each, and
*zip" is a real variable. :

Page 5-22

BASIC0S REFERERCE MARUAL

Program Statements and Structure

Array Declarations

Arrays can have one, two or three dimensions. The DIM statement

format (including type grouping) is the same as for simple variables
except each name is followed by a subscript(s) to indicate its size. The
maximum subscript size is 32767. Simple variable and array declarations
can-be mixed in the same DIH statement: '

DIE a(10),b(20,30),c:INTEGER; x(5,5,5):STRING[12]

In the example above, "a" is an array of 10 integers, "b" is a 20 by 30

matrix of integers, "c" is a simple integer variable, and "x" is a three-
dimensional array of l2-character strings.

Arrays can be any atomic or user-defined type. By declaring arrays

of wuser-defined types, structures of arbitrary complexity and shape can

be generated. Here's an example declaration that generates a doubly-

linked 1list of character strings. Each element of the array consists of

the string containing the data and two integer "pointers". '

TYPE link_pointers = fwd,back: IRTEGER

TYPE element = info: STRING[64]; ptr: link_pointers

DIM 1list(100): element :

(* make a circular list *)

BASEOD

FOR index := 0 to 99

list (index).info := "secret message " + STRS(index)

list(index) .ptr.fwd := index+l

list(index) .ptr.back := index-1l

NEXT index

(* £ix the ends *)

list(0).ptr.back 3= 99

list(99).ptr.fwd := 0

(* Print the list *)

index=0

REPEAT }

PRINT list(index).info

index := list(index).ptr.fwd

UNTIL index=0

ERD

Page 9-23

BASIC09 REFERENCE MARUAL

Program Statements and Structure

PARAM Statement

Syntax: Same as DIM statement

PARAM 1is identical to the DIM statement, but it does not create variable

storage. Instead, it describes what parameters the "called" procedure

expects to receive from the "calling" procedure.

The programmer must ensure that the total size of each parameter (as
evaluated by the RUN statement in the calling procedure) conforms to the
amount of .storage expected for each parameter in the called procedure as
specified by the PARAM statement, BASIC09 checks the size of each
parameter (to prevent accidental access to storage other than the
parameter), but it DOES ROT CHECK TYPE. However, in most cases the

programmer should ensure that the parameters evaluated in the RORN

statement and sent to the called procedure agree exactly with the PARAM

statement specification with respect to: the number of parameters, their

order, size, shape, and type.

Because type-checking is not performed, if you really know what you

are doing you can make the parameter passing operation perform useful but

normally illegal type conversions of identically-sized data structures.
For example, passing a string of 80 characters to a procedure expecting a
BYTE array having 80 elements will assign the numeric value of each
character in the string to the corresponding element of the byte array.

Page 9-24

BASIC09 REFERERCE MANUAL

Program Statements and Structure

TYPE Statement

Syntax: TYPE <typename>

<type decl>

<type decl> {; <type decl>}

<field name> . <decl> [: <type>]

<decl> := <name> [<subscript>]

<subscript> := (<const> [,<const>] {,<const>]])

<type> := BYTE | INTEGER | REAL ;| BOOLEAN |

STRINRG [<max len>] | <user defined>
user defined by TYPE statement{user defined> :

This statement is used to define new data types. New data types are

defined as a "vector®TM (a one-dimensional array) of previously defined

types. This structure differs from an array in that the various elements

may be of different types, and the elements are accessed by field name

instead of an array index. Here's an example:

TYPE cust_recd = name,address(3) :STRING; balance

This example creates a new data type called “"cust_recd" which has three

named fields: a field called "name" which is a string, a field called

"addressTM which is a vector . of three strings, and a field called

"balance” which is a (default) real value.

The TYPE statement can include previously defined types so that very

complex non-rectangular data structures can be created such as lists,
trees, etc. This statement does not create any variable storage itself;
the storage is created when the newly defined type is used in a DIH
statement. The example shown below creates an array having 250 elements

of type "cust_recd"TM that was defined above:

DIM customer_f£file(250):cust_recd

To access elements of the array in assignment statements, the field name

is used as well as the index:

name$ = customer_£file(35).name

customer_file(N+1) .address(3) = "New York, NY"

customer_£file(X).balance= 125,98

The complex structure allows creation of data types appropriate to the
job at hand by providing more natural organization and association of
data. Additionally, the position of the desired element is known and
defined at compilation time and need not be calculated at run time,
unlike arrays, and can therefore be accessed faster than arrays.

Page 9-25

BASIC09 REFPERERCE HARUAL

Program Statements and Structure

This Page Intentionally Blank

Page 9-26

BASIC09 REFERENCE HANUAL

Input and Output Statements

FILES ARD UNIFIED INPUT/OUTPUT

A file 1is a logical concept for a sequence of data which is named

for convenience in use and storage. File data may be pure binary data,

textual data (ASCII characters), or any other useful information.

Hardware input/output ("I/O") devices used by 0S-9 also work like files,

so you can generally use any 1/0 facility regardless of whether you are

working with disk files or I1/0 devices such as printers. This single

interface standard for any device and simple communication facilities

allow any device to be used with any other device; this concept is known

as "unified I/0". Note that unified I/O can benefit routine programming.

For example: £file operations- can be debugged by communicating with a

terminal or printer instead of a storage device, and procedures which

normally communicate with a terminal can be tested with data coming from

and sent to a storage device.

BASICO09 normally works with two types of files: sequential files and

random-access files.

A sequential file sends or receives (WRITE/READ) textual data only

in order. t is not generally possible to start over at the beginning of

a seguential file once a number of bytes have been accessed (many I/0

devices such as printers are necessarily sequential). A seguential file

contains only valid ASCII characters; the READ and WRITE commands perform

format conversion similar to that done automatically in IRPUOT and PRIRT

conmands. A sequential file contains record-delimiter characters

(carriage return) which separate the data created by different WRITE

operations. Each WRITE command will send a complete sequential-file

record, which is an arbitrary number of characters terminated by a

carriage return. Each READ will also read all characters up to the next

carriage return.

A random—-access file sends and receives (PUT/GET) data in binary

form exactly as it is internally represented in BASICO0Y9 which minimizes

both the time involved in converting the data to and from ASCII

representation as well as reducing the file space required to store the

data. It is possible to POT and GET individual bytes or a substructure

of many bytes (in a complex structure). The GET of a structure merely
recovers the number of bytes associated with that type of structure. It
is possible to move to a particular byte in a random-access file (using
SEEE) and to begin to POT or GET seguentially from that point (in
general, "“SEEK #path,0" is egquivalent to the REWIND whichis used in some
forms of BASIC). Since the random-access file contains no record-
separators to indicate the size of particular elements of the file, the
programmer should use the SIZE function to determine the size of a single

element, then use SEEK to move to the desired element within the file.

A new file is created on a storage device by executing CREATE. Once

a file exists, the OPER command is used to notify the operating system to

set up a channel to the desired device and return that path number to the
BASICO0S program. This channel number is then used in file-access

cperations (e.a., RERD, WRITE, GET, PUT, SEEK, etc.). When the

Page 10-1

BASIC09 REPERENCE MANUAL

Input and Output Statements

programmer is finished with the file, it should be terminated by CLOSE to

assure that the file system has updated all data back onto magnetic
media.

I/0 PATHS

A "path"TM is a description of a "channel" through which data flows
from a given program outward, or from some device inward. In order for
data to flow to or from a device, there must be in 0S-9 an associated

device driver - see the 0S5-9 Users Manual. When a path is created, 0S-9
returns a unique number to identify the path in subsequent file

operations. This "path number” is used by the I/O statements to specify
the file to be used, Three path numbers have special meanings because

they are "standard I/0 paths" representing BASIC09's interactive

input/output (your terminal). These are automatically "opened" for you

and should not be closed except in very special circumstances. The

standard I/0 path numbers are: :

0 Standard Input (Keyboard)

1 Standard Output (Display)

2 Standard Error/Status (Display)

The table below is a summary of the I/0 statements within BASICO09

and their general wusage. This reflects typical usage; most statements
can be used with any I/O device or file. Sometimes certain statements

are used in unusual ways by advanced programmers to achieve certain

special effects.

Statement Generally Used With Data Format (File Type)

IRPOT Reyboard (interactive input) Text (Sequential)

PRIRT Terminals, Printers Text (Segquential)

OPEN Disk Files and I/0 Devices Any

CREATE Disk Files and I/0O Devices Any

CLOSE Disk Files and I/0 Devices Any

DELETE Disk Files Any

SEEK Disk Files Binary (Random)

READ Disk Piles Text (Sequential)

WRITE Disk Files Text (Sequential)

GET Disk Files and I/0 Devices Binary (Random)

POT DISK Files and I/0 Devices Binary (Random)

Page 10-2

BASIC09 REFPERENCE HARUAL

Input and Output Statenments

IRPUT Statement

Syntax: INPOUT [#<int expr>,] ["<prompt>*",] <input list>

IRPUT accepts input during execution of a program. The input is

normally read from the standard input device (terminal) unless an

optional path number is given. When the IRPUT statement is encountered,

program execution is suspended and a "?" prompt is displayed. If the

optional prompt string is given, it is displayed instead of the normal

"?" prompt. The INPUT statement is really both an input and output

statement. Therefore, if a path other than the default standard input

path is wused, the path should be open in UPDATE mode. This makes INPUT

dangerous if used on disk files unless you like prompts in your data (use

READ).

The data entered is assigned in order to the variable names as they

appear in the input list. The variables can be of any atomic type, and
the input data must be of the same (or compatible) type. The line is

terminated by a carriage return. There must be at least as many input

items given as variables in the input list. The length of the input

line cannot exceed 256 characters.

If any error occurs (type mismatch, insufficient amount of data,

etc.), the message:

INPUT ERROR - RETYPE

is displayed, followed by a new prompt. The entire input line must then
be reentered.

The IRPUT statement uses 0S-9's line input function (READLN) which

performs 1line editing such as backspace, delete, end-of-file, etc. To

perform input WITHOUT editing (i.e., to read pure binary data), use the
GET statement.

Examples:

IRPUT number,name$,location

INPOT #path,x,y,2

IRPUT "What is your selection: ", choice

IFPUT #path, "What's your name? ",name$§;

Bere's how to read a single character (without editing) from the terminal

(path #0):

DIH char:STRING[1]
GET £0,char

Page 10-3

BASIC09 REFERERCE MARUAL

Input and Output Statements

For a function to test if data is available from the keyboard without
"hanging” the program, see the "INREY" assembly language program included
in Appendix a.

PRIRT Statement

Syntax: PRINRT <output list>

PRIRT #<int exp>, <output list>

PRIRT USIRG <str expr>, <output list>

PRIRT #<int exp>, USIRG <str expr>, <output list>

PRINT outputs the values of the items given in the output 1list to
the standard output device (path #1, the terminal) unless another path

number is specified.

The output list consists of one or more items separated by comma or

semicolon characters. Each item can be a constant, variable, or
expression of any atomic type. The PRINT statement evaluates each item

and converts the result to corresponding ASCII characters which are then
displayed. If the separator character following the item is a semicolon,
the next item will be displayed without any spacing in between. 1If a
comma is used, spaces will be output so the next item starts at the next

"tab"TM zone, The tab zones are 16 characters 1long starting at the
beginning of the 1line. If the line is terminated by a semicolon, the

usual carriage return following the output line is inhibited.

The "TAB(expr)" function can be used as an item in the output list,
which outputs the correct number of spaces to cause the next item to
start in the print column specified by the result of the expression. 1If
the output 1line is already past the desired tab position, the TAB is
ignored. A related <function, "POS", can be used in the program to

determine the output position at any given time. The output columns are
numbered from one to a maximum of 255, The size of BASIC09's output

buffer varies according to stack size at the moment. A practical value

is at least 512 characters. '

The PRIRT USIRG form of this statement is described at the end of

this chapter.

Examples:

PRIRT value,temp+(n/2.5),location$

PRIRT #printer_path,"The result is "; n

PRIRT “"what is" + name$ + "'s age? ";

PRIRT "index: ";i;TAB(25);"value: ";value

PRIRT USIRG "R10.2,%2,R5.3",x,y

Page 10-4

BASIC09 REFERENCE MANUAL

Input and Output Statements

PRINT #outpath USIRG fmt$,count,value

(* print an 80-character line of all dashes *)

REPEAT

PRIRT "-";

ONTIL POS >= 80

PRIRT

Page 10-5

BASIC0S REFERENCE MANRUAL

Input and Output Statements

OPEN Statement

Syntax: OPEN #<int var>,<str expr> [: <access mode>]

{access mode> := <mode> | <mode> + <access mode)

<mode> := READ | WRITE ! UPDATE | EXEC | DIR

OPEN issues a reguest to 0S-9 to open an I/O path to an existing
file or device. The STRIRG expression is evaluated and passed to 0S~9 as
the descriptive pathlist. The variable name specified must be
DIMensioned as type INTEGER or BYTE and is used to "receive" the "path
number” assigned to the path by 08-9. The path number is used to
reference the specific file/device in subsequent input/output statements.

The OPEN statement may also specify the path's desired "“access mode"
which can be READ, WRITE, UPDATE, EXEC, or DIR. The access mode defines
which direction 1I/0 transfers will occur. If no access mode is
specified, UPDATE is assumed and both reading and writing are permitted.
The DIR mode allows 0S-9 directory-type files to be accessed but should
ROT be used in combination with with WRITE or UPDATE modes. The EXEC mode
causes the current execution directory to be used instead of the current
data directory. Refer to the "0S~9 User's Manual" for more information
on how files access modes.

Examples:

DIF printer_path:BYTE; name:STRIRG[24]

name="/p"

OPER #printer_path,name:WRITE

PRINT #printer_path,"Mary had a little lamb®
CLOSE #printer_path

DIM inpath:IRNTEGER

dev$="/winchester/"

IRPUT names$

OPER #inpath,dev$+name$:READ

OPER #path:userdir$:READ+DIR

OPEN #path,name$:WRITE+EXEC

Page 10-6

BASICO09 REFERENCE HMANUAL

Input and Output Statements

CREATE statement

Syntax: CREATE #<int var>,<str expr> [: <access mode>]

<access mode> := <mode> ! <mode)> + <access mode>

<mode> := WRITE ! UPDATE ! EXEC

The CREATE statement is used to create a new file on a multifile

mass storage device such as disk or tape. If the 'device is not

multifile, this statement works like an "OPEN" statement. The variable

name is used to "receive" the path number assigned by 0S-9 and must be of

BYTE or INTEGER type. The STRING expression is evaluated and passed to

05-9 to be used as the descriptive pathlist.

The "access mode”TM defines the direction of subsequent I/0 transfers

and should be either WRITE or UPDATE. "UPDATE" mode allows the file to

be either read or written.

0S-9 has a single file type that can be accessed both sequentially

OR at random. Files are byte-~addressed, so no explicit "record" length

need be given (see GET and PUT statements). When a new file is created,

it has an initial length of zero. Files are expanded automatically by

PRIRT, WRITE, or PUT statements that write beyond the current "end of

file®TM. File size may be set explicitly using the 0S9 statement.

Examples:

CREATE #trans, "transactions”TM:UPDATE

CREATE #spool, "/user4/reportTM:WRITE

CREATE #outpath,nameS$:UPDATE+EXEC

Page 10-7

BASICO09 REPERENCE MANUAL
Input and Output Statements

CLOSE Statement

Syntax: CLOSE #<int expr> { ,#<int expr> }

The CLOSE statement notifies 0S-9 that one or more I/O paths are no
longer needed. The paths are specified by their number(s). If the closed
path used a non-sharable device (such as a printer), the device is
released and can be assigned to another user. The path must have been
previously established by means of the OPEN or CREATE statements.

Paths #0, #1, and #2 (the standard I/O paths) should never be closed
unless the user immediately opens a new path to take over the Standard
Path number.

Examples:

CLOSE #master,#trans, fnew_master

CLOSE #5,%£6,%9

CLOSE £l \(* closes standard output path *)
OPEN #path,"/T1" \(* Permanently redirects Std Output *)

CLOSE #0 \(* closes standard input path *)

OPER #path,"/TERM® \(* Permanently redirects Std Input *)

Page 10-8

BASIC09 REFERENCE MARUAL

Input and Output Statements

DELETE Statement

Syntax: DELETE <str expr>

This statement is used to delete a mass storage file. The file's name is
removed from the directory and all its storage is deallocated, so any
data on the file is permanently lost. The string expression is evaluated
and passed to 0S-9 as the descriptive pathlist of the file.

The user must have write permission for the file to be deleted. See
the "0S5-9 OPERATING SYSTEM USER'S MANUAL" for more information.

Examples:

DELETE */D0/0ld_junk"”

name$="file55"

DELETE nameS$ | ' -
DELETE "/D2/"+name$ (deletes file named "/D2/file55")

Page 10-9

BASIC09 REFERERCE HMANUAL

Input and Output Statements

SEEK Statement

Syntax: SEEK #<int expr>,<real expr>

SEER changes the file pointer address of a mass storage file, which
is the address of the next data byte(s) that are to be read or written.
Therefore, this statement is essential for random access of data on files
using the GET and PUT statements.

The first expression specifies the path number of the file and must

evaluate to a byte value., The second expression specifies the desired
file pointer address, and must evaluate to a REAL value in the range 0 <=

result <= 2,147,483,648. 2Any fractional part of the result is truncated.
Of course the actual maximum file size depends on the capacity of the

device, '

Although SEERK is normally used with random-access files, it can be used
to "rewind" sequential files., For example:

SEEK #path,0

is the same as a "rewind" or "restore"TM function. This is the only form

of the SEEK statement that is generally useful for files accessed by READ
and WRITE statements. These statements use variable~length records, so
it is difficult to know the address of any particular record in the file.

Examples:

SEEK #fileone,filptr*2

SEEK #outfile, 208894

SEEK #inventory,(part_num - 1) * SIZE(inv_rcd)

Page 10-10

BASIC09 REFERERCE MANUAL

Input and Output Statements

WRITE Statement

Syntax: WRITE #<int expr>,<output list>

The WRITE statement writes data in ASCII character format on a

file/device. The first expression specifies the number of a path that
was previously opened by a OPEN or CREATE statement in WRITE or UPDATE

mode.

The output 1list consists of one or more expressions separated by

commas. Each expression can evaluate to any expression type. The result

is then 'converted to an ASCII character string and written on the

specified path beginning at the present file pointer which is updated as

data is written.

If the output 1list has more than one item, ASCII null characters

(S00) are written between each output string., The last item is followed
by a carriage return character, ‘

Note that this statement creates variable-length ASCII records..

Examples:

WRITE #outpath,cat,dog,mouse

WRITE #xfile,LBFT$(A$,n)}count/2

Page 10-11

BASIC09 REFERERCE MANDAL

Input and Output Statements

READ Statement

Syntax: READ #<int expr>,<input list>

The READ statement causes input data in ASCII character format to be

read from a file or device. The first expression specifies a path number
which must have been previously opened by an OPER or CREATE statement in
READ or UPDATE access mode (except the standard input path £#0). Data is.

read starting at the path's current file pointer address which is updated

as data is read. ‘

READ calls 0S-9 to read a variable length ASCII record. Individual

data items within the record are converted to BASIC09's internal binary
format, These results are assigned in order to the variables given in

the input 1list. The input data must match the number and type of the
variables in the input list.

The individual data items in the input record are separated by ASCII

null characters. Numeric items can also be delimited by commas or space

characters. The input record is terminated by a carriage return

character.

Examples:

READ #inpath,name$,address$,city$,state$,zip

PRIRT £1,"height,weight? "

READ #0,height,weight

Note: READ is also used to read lists of expressions in the program. See

the DATA statement section for details.

Page 10-12

BASIC09 REFERENCE MARUAL
Input and Outpat Statements

GET Statement

PUT Statement

Syntax: GET #<expr>,<struct name>

POT #<expr>,<struct name>

The GET and PUT statements read and write fixed-size binary data

records to files or devices. These are the primary I/0 statements used

for random access input and output.

The first expression is evaluated and used as the number of the I/0O

path which must have previously been opened by an OPER or CREATE

statement, Paths used by PUT statements must have been opened in WRITE

or UPDATE access modes, and paths used by GET statements must be in READ

or UPDATE mode.

The statement wuses exactly one name which can be the name of a

variable, array or complex data structure. Data is written from, or

read into, the variable or structure named. The data is transferred in

BASIC09's internal binary format without conversion which affords very

high throughput compared to READ and WRITE statements. Data is

transferred beginning at the current position of the path's file pointer

(see SEEK statement) which is automatically updated.

0S-9's file system does not inherently impose record structures on

random-access files, All files are considered to be continuous sequences

of addressable binary bytes. A byte or group of bytes located anywhere

in the file can be read or written in any order. Therefore the

prooremmer is:- free to use the basic file access system to create any
record structure desired.

Record I/O in BASIC09 is associated with data structures defined by

DIM and TYPE statements. The GET and PUT statements write entire data

structures -or parts of data structures. A PUT statement, for example,

can write a simple variable, an entire array, or a complex data structure

in one operation. To illustrate how this works, here is an example based

on a simple inventory system that requires a random access file having

100 records. Each record must include the following information: the
name of the item (a 25-byte character string), the item's list price and
cost (both real numbers), and the quantity on hand (an integer).

First it is necessary to use the TYPE statement to define a new data
type that describes such a record. For example:

TYPE inv_item=name:STRING[25];1ist,cost:REAL;gty:INTEGER

This staztement describes a new record type called "inv_item" but does not

Page 10-13

BASICO09 REPERENCE MARUAL

Input and Output Statements

cause variable storage to be assigned for it. The next step is to create
two data structures: an array of 100 "records" of type "inv_item" to be
called "inv_array” and a single working record called "work_rec":

DIM inv_array(100):inv_item
DIM work_rec:inv_item

You can manually count the number of bytes assigned for each type to
calculate the total size of each record. Sometimes this can become
complicated and error-prone. Also, any change in a TYPE definition could
require recalculation. Fortunately, BASIC09 has a built-in function:

SIZE(<name>)

that returns the number of bytes assigned to any variable, array, or
complex data structure. In our example, SIZE(work_rec) will return the
number 37, and SIZE(inv_array) will return 3700. The size function is
often used in conjunction with the SEERK statement to position a file
pointer to a specific recordfs address.

The procedure below creates a file called "inventory"TM and
initializes it with zeroes and nulls:

PROCEDDRE makefile

TYPE inv_item = name:STRIRG[25]; list,cost:REAL; gty:INTEGER
DIM inv_array(100):inv_item
DIM work_rec:inv_item

DIM path:byte

CREATE #path, "inventory"
work_rec.name = ""

work_rec.list := 0.

work_rec.cost := 0,

work_rec.qgty := 0

FORn =1 TO 100

POT {path,work_rec

REXT n

ERD

Notice that the assignment statements reference each named "field" of
work_rec by name, but the PUT statement references the record as a whole.

The subroutine below asks for a record number, then asks for data
and writes it on the file at the specified record:

IRPUOT "Record number ?%,recnum

IRPUT "Item name? ",work_rec.name
INPUT "List price? ",work_rec.list
IRPUT "Cost price? ",work_rec.cost
IRPUT "Quantity? ",work_rec.gty
SEEX #path, (recnum - 1) * SIZE(work_rec)
PUOT #path,work_rec

Page 10-14

BASIC09 REPERENCE MARUAL

Input and Output Statements

The routine below uses a 1loop to read the entire file into the array

"inv_array": :

SEEK #path,0 \ (* "rewind" the file *)

FOR K =1 TO 100

GET #path,inv_array(k)

REXT k

Because ENTIRE STRUCTURES can be read, we can eliminate the FOR/NEXT loop
and do exactly the same thing by:

SEEK #path,0

GET #path,inv_array

The above example is a very simple case, but it illustrates the combined

power of BASIC09 complex data structures and the random access 1/0

statements. When fully exploited, this system has the following

important characteristics:

1. It is self-documenting. You can clearly see what a program

does, because structures have descriptive named sub-structures.

2. It is extremely fast.

3. Programs are simplified and typically require fewer statements

to perform I/0 functions than in other BASICs.

4, It is versatile. By creating appropriate data structures you
can read or write almost any kind of data on any file, including

files created by other prograzms or languages. :

These advantages are possible because a single GET or PUT statement can
move any amount of data, organized any way you want.

Page 10-15

BASIC09 REFERENCE MARUAL

Input and Output Statements

IRTERNAL DATA STATEHENRTS

DATA Statement

READ Data Statement

RESTORE Statement

Syntax: READ <input list>

DATA <expr> , { <expr> }

RESTORE [<line number>]

These . statements provide an efficient way to build constant tables

within a program. DATA statements provide values, the READ statement

assigns the values to variables, and RESTORE statements can be used to

set which data statement is to be read next.

The DATA statements have one or more expressions separated by

commas. They can be located anywhere in a program. The expressions are

evaluated -each time the data statements are read and can evaluate to any

type. Here are some examples:

DATA 1.1,1.5,9999,"CAT","DOG"

DATA SIR(temp/25), COS(temp*PI)

DATA TRUE,FALSE, TRUE,TRUE,PALSE

The READ statement has a list of one or more variable names. When

executed, it gets “"input" by evaluating the current expression in the
current data statement. The result must match the type of the variable.
When all the expressions in a DATA statement have been evaluated, the
next DATA statement (in sequential order) is used. If there are no more

DATA statements following, processing "wraps around" to the first data

statement in the program.

The RESTORE statement used without a line number causes the first

DATA statement in the program to be used next, If it is used with a line
number, the data statement having that line number is used next.

Exanples:

’

’

100 DATA 9,10

Page 10-16

BASIC09 REFERENCE MARUAL

Input and Output Statements

FORMATTED OUTPUT: THE PRINT USING STATEMENT

BASIC09 has a powerful output editing capability useful for report

generation and other applications where formatted output is required.

The output editing uses the PRIRT USIRG statement which has the following

syntax:

PRINRT [#<expr>] USIRG <str expr> , <output list>

The optional path number expression can be used to specify the path

number of any output file or device. If it is omitted, the output is

written to the standard output path (usually the terminal).

The string expression is evaluated and used as a "format specifi-

cationTM which contains specific formatting directives for each item in

the "output 1list". The items in the output list can be constants,

variables, or expressions of any atomic type. BLANKS ARE ROT ALLOWED IN

FORMAT STRINGS! As each output item is processed, it is matched up with

a specification in the format list. The type of each expression result

must be compatible with the corresponding format specification. If there

are fewer format specifications than items in the output list, the format

specification 1list is repeated again from its beginning as many times as

necessary.

A format string has one or more format specifications which are

separated by commas. There are two kinds of specifications: ones that
control output editing of an item from the output list and ones that

cause an output function by themselves (such as tabbing and spacing).

There are six basic output editing directives. Each has a corresponding
one-letter identifier:

real format

exponential format

integer format

hexadecimal format

string format

boclean formatWwnnmHg
The identifier letter is followed by a constant number called the "field
width". This number indicates the exact number of print columns the
output is to occupy and must allow for the data ARD "overhead" character
positions such as sign characters, decimal points, exponents, etc. Some
formats have additional mandatory or optional parameters that control
subfields or select editing options. One of these options is

"justification" which specifies whether the output is to "line up" on the
left side, right side, or <center of the output field. Fields are
commonly right-justified in reports because it arranges them into neat
columns with decimal points aligned in the same position.

The abbreviations and symbols used in the syntax specifications are:

Page 10-17

BASIC09 REFERERCE MAKRUAL

Input and Output Statements.

Total field width: 1l <= w <= 255

fraction field: l<=w<K=09

OPTIONAL justification: < (left) > (right) ° (center)

Page 10-18

BASIC09 REFERENCE HANRUAL

Input and Output Statements

REAL FORMAT

Syntax: Rw.fj

This format can be used for numbers of types REAL, IRTEGER or BYTE.
The total field width specification must include two overhead positions
for the sign and decimal point. The "f" gpecifies how many fractional
digits to the right of the decimal point are to be displayed. 1If the
number has more significant digits than the field allows for, the
undisplayed places are used to round the displayed digits. For example:

"PRIRT USIRG "R8.2", 12.349 gives 12.35

The justification modes are:

left justify with leading sign and trailing spaces.
(default if justification mode omitted)

right justify with leading spaces and sign.
right justify with leading spaces and trailing sign
(financial format)

*YVA
Examples:

PRINT USIRG "R8.2<",5678.123 5678.12

PRIRT USIRG "R8.2>",12.3 12.30

PRINT USIRG "R8.2>",-555,9 -555.90

PRINT USING "R10.2°",-6722.4599 6722.46-

PRINT USIRG "RS5.1","9999999" Rlb

EXPONERTIAL PORHMAT

Syntax: Ew.fj

This format prints numbers of types REAL, INTEGER, or BYTE in the

scientific notation format using a mantissa and decimal exponent. The

syntax and behavior of this format is similar to the REAL format except

the "w" (field width) must allow for six overhead positions for the

mantissa sign, decimal point, and exponent characters. The "<" and ">"

justification modes are allowed and work the same way.

Examples:

PRINT USIRG "El12.3",1234.567 1.234E+03

PRINT USIRG "El12.6>",-0.001234 -1.234E-03

Page 10-19

BASIC09 REFPERERCE MARUAL

Input and Output Statements

INTEGER FORMAT

Syntax: Iwj

This format is used to display numbers of types IRTEGER or BYTE, and

REAL numbers that are within range for automatic type conversion. The
"w" (field width) must allow for one position overhead for the sign. The
justification modes are: :

< left justify with leading sign and trailing spaces (default)
> right justify with leading spaces and sign
s right justify with leading sign and zeros

Examples:

PRIRT USIRG "I4<",10 10

PRINT USIKG "I4>",10 ’ 10

PRIRT USIRG "I4"",10 010

HEXZADECIHAL PORMAT

Syntax: BHwj

This format can be used to display the internal binary
representation of ANY data type, using hexadecimal characters. The "w"
(field width) specification determines: the number of hexadecimal
characters to be output. Justification modes are:

< left justify with trailing spaces

> right justify, leading spaces

“ center justify

Because the number of bytes of memory used to represent data varies
according to type, the following specification make the most sense for
each data type:

E2 boolean, byte (one byte)

B4 integer (two bytes)

H10 real (five bytes)

BEn*2 string of length n

Examples:

PRIRT UOSIRG “H4",100 00C4

PRIRT USIRG "H10",1.5 01C0000000

PRIRT USINRG "H8", "ABC" 414243

Page 10-20

BASIC09 REFERERCE MARUAL

Input and Output Statements

STRIRG FORMAT

Syntax: Swj

This format is used to display string data of any length. The "w"
(field width) specifies the total field size. If the string to be

it is padded with spacesdisplayed is shorter than the field size,

according to the Jjustification mode. If it is too long, it will be
truncated on the right side. The format specifications are:

Left justify (default if mode omitted)

; right justify
- Center justify

Examples:

PRINT USIRG "S8<","HELLO" HELLO

PRINT USIRG "S8>","HELLO" HELLO

BELLOPRIRT USING "S8"", "HELLO"

BOOLEAR FORMAT

Syntax: Bfij

This format is used to display boolean data. The result of the
is converted to the strings "TRUE" and "FALSE". Theboolean expression

specification is otherwise identical to the STRING format.

Page 10-21

BASIC09 REFERENCE MARUAL

Input and Output Statements

CONTROL SPECIFICATIORS

Control specifications are useful for horizontal formatting of the
output 1line. They are not matched with items in the output 1list and can
be used freely. The control formats are:

Tn Tab to column n

Xn Space n columns

'str' 1Include constant string. The string must not include
single or double quotes, backslash, or carriage return
characters,

Warning: Control specifications at the end of the format specification
list will NOT be processed if all output items have been exhausted.

Example:

PRINT USIKG *"‘addr‘',X2,B4,X2,'data',X2,H2%,1000,100 prints

addr 03E8 data 64

REPEAT GROUPS

Many times, identical sequences of specifications are repeated in
format specification 1lists., The repeated groups can be enclosed in
parentheses and preceded by a repeat count. These repeat groups can be
nested. Here are some examples:

"2(X2,R10.5)" is the same as "X2,R10.5,X2,R10.5"

"2(I2,2(X1,84))" is the same as "I2,X1,S4,X1,S54,I2,%X1,54,X1,54"

Page 10-22

BASICO09 REFERENCE MANUAL

Program Optimization

GENERAL EXECUTIOR PERFORMANCE OF BASICO9

The BASIC09 multipass compiler produces a compressed and optimized

low-level "I-code"TM for execution. Compared to other BASIC languages,

program storage is greatly decreased and execution speed is increased.

Bigh-level 1language interpreters have a general reputation for

slowness which is probably not deserved. Because the BASIC09 I-code is
kept at a very powerful level, a single, fast, I-code interpretation will

often result in many MPU instruction cycles (such as execution of

floating-point arithmetic operations). Thus, for complex programs, there

is little performance difference between execution of I-code and straight

machine-language instructions., This is generally not the case with

traditional BASIC interpreters that have to "compile”TM from text as they

run or even with "tokenized" BASICs that must perform table-searching

during execution. BASIC09 1I-code instructions that reference variable

storage, statements, labels, etc., contain the actual memory addresses,

so no table searching is ever required. Of course, BASICO09 fully

exploits the power of the 6809's instruction set which was optimized for

efficient execution of compiler-produced code.

Because the BASIC09 I-code is interpreted, a variety of entry-time

and run-time tests and development aids are available to help in program

development: aids not available on most compilers. The editor reports

errors immediately when they are entered, the debugger allows debugging

using the original program source statements and names, and the I-code

interpreter performs run time error checking of things such as array
bound errors, subroutine nesting, arithmetic errors, and other errors

that are not detected (and usually crash) native-compiler-generated code.

OPTIRUM USE OF RUMERIC DATA TYPES

Because BASIC09 includes several different numeric representations
(i.e., REAL, IRTEGER, and BYTE) and does "automatic type conversions”
between them, it is easy to write expressions or loops that take at least
ten times longer to execute than is necessary. Some particular BASICO9
numeric operators (+, -, *, /) and control structures (FOR..NEXT) include
versions both for REAL and INTEGER values. The IRTEGER versions, of
course, are much faster, and may have slightly different properties
(e.g., IRTEGER divides discard any remainder). Type conversions take
time, so expressions whose operands and operators are of the same type
are more efficient.

BASIC0S9's REAL (floatinc-point) math package provides excellent
performance, A special 40-bit binary flcating point representation
designed for speed and accuracy, was develcped especially for BASICO9
after exhaustive research. The new CORDIC technique is used to derive

all transcendental functions (SIR, TAN, LOG, EXP, etc.). The integer

shift-and-add technique is faster and more consistantly accurate than the

commonly used series-expansion approximations.

Page 11-1

BASIC09 REFERERCE HMANUAL

Progranm Optimization

Nonetheless, IRTEGER operations are faster because they generally

have corresponding 6809 machine-language instructions. Overall program

speed will increase and storage requirements will decrease if INTEGERSs

are used whenever possible. IRTEGER arithmetic operations use the same

symbols as REAL but BASIC09 automatically selects the IRTEGER operations

when working with an integer-value result. Only if all operands of an

expression are of types BYTE or IRTEGER will the result also be IRTEGER.

Sometimes, similar or identical results can be obtained in a number

of different ways at wvarious execution speeds. For example, if the

variable "value"TM is an integer, then "value*2" will be a fast integer

operation, However, if the expression is "value*2,.0" the value "2.0"

will be represented as a REAL number, and the multiplication will be a

REAL multiplication which will also reguire that the variable "value"

will have to be transformed into a REAL value, and finally the result of

the expression will have to be transformed back to an IRTEGER value if it

is to be assigned to a variable of that type. Thus a single decimal

point will slow this particular operation down by about ten times!

ARITHHETIC FURCTIORS RARKED BY SPEED

Operation Typical Speed (MPU Cycles)

IRTEGER ADD OR SUBTRACT 150

INTEGER RULTIPLY 240

REAL ADD 440

REAL SUBTRACT 540

IRTEGER DIVIDE 960

REAL MULTIPLY) 990

REAL DIVIDE 3870

REAL SQUARE ROOT 7360

REAL LOGARITHM OR EXPONENTIAL 20400

REAL SINE OR COSINE 32500

REAL POWER (7) 39200

This table can be used to deduce some interesting points, For

example, "value*2" is not optimum - "value+value" can produce the same

result in less time because multiplication takes longer than addition.

Similarly, "value*value” or "SQ(value)" 1is MUCH faster than the

equivalent *value®2", Another interesting case is "x/2.0". The REAL

divide will cost 3870 cycles, but REAL multiplication takes only 990

cycles. The mathematical eguivalent ¢to division by a <constant is

nultiplication by the inverse of the constant. Therefore, using "x*0.5"

instead is almost four times faster!

LOOPING QUICKLY

When BASICO09 identifies a POR..REXT loop structure with an IRTEGER

loop counter variable, it uses a special integer version of the FOR,.REXT

loop. This is much faster than the REAL-type version and is generally

preferable, ther kinds of loops will also run faster if INTEGER type

variables are used for loop counters.

Page 11-2

BASIC09 REFERENCE MARNUAL

Program Optimization

When writing program loops, remember that statements INSIDE the loop

may be executed many times for each single execution OUTSIDE the loob.
Thus, any value which can be computed before entering a loop will
increase program speed,

OPTIMUM USE OF ARRAYS ARD DATA STRUCTURES

BASIC09 internally uses INTEGER numbers to index arrays and complex
data structures. If the program uses subscripts that are REAL type

variables or expressions, BASIC09 has to convert them to INTEGERs before
they can be used., This takes additional time, so use INTEGER expressions

for subscripts whenever you can.

Note that the assignment statement (LET) can copy identically sized
data structures, LET is much faster than copying arrays or structures

element-by-element inside a loop.

THE PACK COMMARD

The PACK command produces a compressed version of a BASICOS
procedure, Depending on the number of comments, line numbers, etc.,

#~~vograms will execute from 10% to 30% faster after being PACKed.
inimizing use of 1line numbers will even speed up procedures that are
unPACEed.

ELIMIRATING CORSTANT EXPRESSIORS ARD SUBEXPRESSIORS

Consider the expression:

x = x+SQRT(100)/2

It is exactly the same as the expression:

x = x+5

The subexpression "SQRT(100)/2" consists of constants only, so its result
will not vary regardless of the rest of the program. But every time the

program is run, the computer must evaluate it. This time can be

significant, especially if the statement is within a loop. Constant
expressions or subexpressions should be calculated by the programmer
while writing the program (using DEBUG mode or a pocket calculator).

FAST IRPUT ARD OUTPUT FURCTIORS

_— - ‘o . . .

Reading or writing data a line or record at a time 1is much faster

.han one character at a time. Also, the GET and PUT statements are much

Page 11-3

BASICO09 REFERERCE HARUAL

Program Optimization

faster than READ and WRITE statements when dealing with disk files. This
is because GET and POUT use the exact binary format used internally by

BASICO09. READ, WRITE, PRIRT, and IRPUT must perform binary-to-ASCII or
ASCII-to-binary conversions which take time. ’

PROFESSIONAL PROGRAMMIKG TECHNIQUES

One sure way to make a program faster is to use the most efficient

algorithms possible,. There are many good programming "cookbooks" that
explain useful algorithms with examples in BASIC or PASCAL., Thanks to

BASIC09's rich vocabulary you can use algorithms written in either
language with little or no adaptation.

, BASIC09 also eliminates any possible excuse for not using good
structured programming style that produces efficient, reliable, readable,
and maintainable software. BASIC09 generates optimized code to be
executed by the 6809 which is the most powerful 8-bit processor in
existence at the time of this writing. But a computer can only execute
what it is told to execute, and no language implementation can make up
for an inefficient program. An inefficient program is evidence of a lack
of understanding of the problem. ‘The result is likely to be hard to
understand and hard to update if program specifications change (they
always do). The identification of efficient algorithms and their clear,
structured expression is indicative of professionalism in software design
and is a goal in itself.

Page 11-4

BASIC09 REFERENCE MANUAL

Sample Programs

PROCEDURE fibonacci

REM computes the first ten Fibonacci numbers

DIM x,y,i,temp:INTEGER

x:=0 \y:=0

POR i=0 TO 10

temp:=y

IF i<>0 THEN

yi=y+x

ELSE y:=1

ENDIF

Xx:=temp

PRIRNT i,y

REXT i

PROCEDURE fractions

REM by T.F. Ritter

REM finds increasingly-close rational approximations

REM to the desired real value

DIM m:IRTEGER

desired:=PI

last:=0

FOR m=1 TO 30000

n:=INT(.5+m*desired)

trial:=n/m A

IF ABS(trial-desired)<ABS(last-desired) THEN

PRIRT n; "“/"; m; " = "; trial,

PRINT “"difference = "; trial-desired;

PRINT

last:=trial

ENDIP

REXT m

Page A-1l

BASIC09 REFERERCE MANUAL

Sample Programs

PROCEDURE prinbi

REM by T.F. Ritter

RER prints the integer parameter value in binary

PARAM n:INTEGER

DIM i:INTEGER

POR i=15 TO 0 STEP -1

IF n<0 THER

PRINT "1%;

ELSE PRIRT "0";

ERDIFP

n:=n+n

REXT i

PRIRT

ERD

PROCEDDRE hanoi

REM by T.F. Ritter

REM move n discs in Tower of Banoi game

REM See BYTE Magazine, Oct 1980, pg. 279

PARAM n:IRTEGER; from,to_,other:STRING[8]

IF n=1 THBERN

PRIRT "move /%"; n; " from "; from; " to "; to_

ELSE '

RON hanoi(n-l,from,other,to_)-

PRIRT " move #"; n; " from "; from; "TM to "; to_

RON hanoi(n-l,other,to_,from)

ERDIF

ERD

Page A-2

BASIC09 REFERENCE MANUAL

Sample Programs

PROCEDURE roman

REM prints integer parameter as Roman Numeral

PARAM x:INTEGER

DIM value,svalu,i:INTEGER

DIM char,subs:STRING

char:="MDCLXVI"

subs:="CCXXII "

baTa 1000,100,500,100,100,10,50,10,10,1,5,1, 1 0

FOR i=1 TO 7

READ value

READ svalu

WHILE x>=value DO

PRINT MIDS$(char,i,l):

X:=x-value

ENRDWHILE

IP x>=value-svalu THEN

PRINT MIDS$(subs,i,l); MIDS$(char,i,l);

t=x-value+svalu '

ERDIF

REXT i

ERD

Page A-3

BASIC09 REFERERCE MANUAL

Sample Programs

PROCEDURE eightgqueens

REM originally by N. Wirth; here re-coded from Pascal
REM finds the arrangements by which eight queens
REM can be placed on a chess board without conflict

DIM n,k,x(8):INTEGER

DIM col(8),up(l5),down(15): BOOLEAN

BASE 0

(* initialize empty board *)

n:=0

POR k:=0 TO 7 \col(k):=TRUE \NEXT k

POR k:=0 TO 14 \up(k) :=TRUE \down(k) :=TRUE \NEXT k
ROR generate(n,x,col,up,down)

END '

PROCEDURE generate

PARAM n,x(8): IRTEGER ,

PARAM col(8) ,up(15),down(15):BOOLEAN

DIM h,k:IRTEGER \h:=0

BASE 0

REPEAT

IP col(h) ARD up(n-h+7) ARD down{n+h) THER
(* set gueen on square [n,h] *)
x(n):= .

col (h) :=PALSE \up(n-h+7) :=FALSE \down(n+h) := FALSB
n:=n+l

IF n=8 THER

(* board full; print configuration ¥*)
POR k=0 TO 7 ,

PRIET x(k); " "

NEXT k

PRIRT

ELSE RUN generate(n,x,col,up,down)

ERDIF

(* remove qgueen from square [n,h] ¥*)
n:=n-1

col (h) :=TRUE \up(n-h+7) :=TRUE \down (n+h) :=TRUE
ERDIP

h:=h+1

URTIL h=8

ERD

Page A-4

BASIC09 REFERENCE MANUAL

Sample Programs

PROCEDURE electric

REM re-programmed from "ELECTRIC"

REM by Dwyer and Critchfield

REM Basic and the Personal Computer (Addison—Wesley,v1978)

REM provides a pictorial representation of the

REM resultant electrical field around charged points

DIM a(10),b(10),c(10)

DIM x,y,1i,3: INTBGER

xscale:=50./78.

yscale:=50./32.

IRPUT “How many charges do you have? ",n

PRINT "The field of view is 0-50,0-50 (x,y)"

POR i=1 TO n

PRINT "tvpe in the x and y positions of charge ";

PRINT i;
IRPOT a(i),b(i)

NEXT i

PRINT “"type in the size of each charge-

POR i=1 TO n

PRINRT "charge *; 1,

INPUT c(i)

REXT i

REM visit each screen position

FOR y=32 TO 0 STEP -1

FOR x=0 TO 78

REM compute field strength into v

GOSUB 10

z:=v*50.

REM map z to valid ASCII in b$

GOSUB 20

REM print char (proportional to field)

PRINT bS;

NEXT x

PRINT

NEXT y

END

v=l,

FOR i=1 TO n

:=SQRT(SQ(xscale*x-a(i))+SQ(yscale*y-b(i)))
EXITIF r=.0 THEN

:=99999,

ENDEXIT

vi=v+c(i)/r

NEXT i

RETURN

(continued on next page)

Page A-3

BASIC09 REFERENCE MANUAL

Sample Programs

PROCEDURE ELECTRIC -~ CONTINUED

20 IP z<32 THER b$:=" "

ELSE

IF z>57 THER z:=2+8

ERDIFP

IP z>90 THER bS:="*"

ELSE

IP z>IRT(z)+.5 THEN bS$:=" "

ELSE b$:=CBRS$(z)

ERNDIPF

ERDIF

ERDIF

RETURR

Page A-6

BASIC09 REFERERCE MANUAL

Sample Programs

PROCEDURE structst

REM example of intermixed array and record structures’

REM note that structure d contains 200 real elements

TYPE a=one(2) :REAL

TYPE b=two(10):a

TYPE c=three(10):b

DIK d,e:c

FOR i=1 TO 10

FOR j=1 TO 10

FOR k=1 TO 2

PRINT d.three(i).two(j).one(k)

d.three(i).two(j).one(k):=0.

PRINT e.three(i).two(Jj).one(k)

PRIRT

NEXT Kk

NEXT j

REXT i

REM this is a complete structure assignment

e:=d :

FOR i=1 TO 10

POR j=1 TO 10

FOR k=1 TO 2

PRINT e.three(i).two(Jj).one(k);

NEXT k

PRINT

NEXT j

NEXT i

ERD

Page A-7

BASICO09 REFERERCE MARUAL

Sample Programs

PROCEDURE pialook

REM display PIA at address (T.F. Ritter)

REM made understandable by K. Kaplan

DIX address:INTEGER

INPUT "Enter PIA address"; address

RON side(address)

RUN side(ad+2)

ERD

PROCEDURE side

REM display side of PIA at address

PARAM address:INTEGER

DIM data:INTEGER

(* loop until control register input strobe

(* flag (bit 7) is set

REPEAT \ UNTIL LARD(PEEK (address+l),$80) <> 0

(* now read the data register

data := PEEK(address)

(* display data in binary

RON prinbyte(data)

ERD

PROCEDURE prinbyte

REM print byte as binary

PARAM n:IRTEGER

DIM i:INTEGER

n:=n*256

POR i=7 TO 0 STEP -1

IF n<0 THEN PRINT "1%;

ELSE PRINT "0";

ERDIF

n:=n+n

KEXT i

PRIRT

EED

Page A-8

BASIC09 REFERERCE MANUAL

Sample Programs

PROCEDURE gsortl

REM quicksort, by T.F. Ritter

PARAM bot,top,d(1000): INTEGER

DIM n,m:INTEGER; btemp:BOOLEAN

LOOP \REM each element gets the once over

REPEAT \REM this is a post-inc instruction

btemp:=d(n)<d(top)

ne=n+l

URTIL ROT (btemp)

n:=n-1 \REM point at the tested element

EXITIF n=m THERN

ENDEXIT

REPEAT \REM this is a post-dec instruction
:=m-1

ONTIL d(m)<=d(top) OR m=n

EXITIP n=m THER

ERDEXIT

ROR exchange(d(m),d(n))

n:=n+l \REM prepare for post-inc

EXITIF n=m THER

ERDEXIT

ENDLOOP

IP n<>top THEN

IP d(n)<>d(top) TEHEN

ROUN exchange(d(n),d(top))

ERDIF

ERDIF

IFP bot<n-l1 THEN

ROUN gsortl (bot,n-1,d)

ERDIP

IF n+l<top TEER

RON gsortl (n+l1l, top,d)

EHDIP

ERD

(continued on next page)

Page A-9

BASIC09 REFERENCE MANUAL

Sample Programs

(QUICKSORT - continued)

PROCEDURE exchange

PARAM a,b:IRTEGER

DIM temp:IRTEGER

temp:=a

a:=b

b:=tenmp

ERD

PROCEDURE prin

PARAM n,m,d(1000): INTEGER

DIM i:INTEGER

POR i=n TO m

PRIRT d(i);

REXT i

PRINT

ERD

PROCEDURE sortest

REM This procedure is used to test Quicksort

REM It fills the array "d" with randomly generated

REM numbers and sorts them.

DIM i,d(1000) :INTEGER

POR i=1 TO 1000

d(i):=INT(RRD(100))

REXT i

RON prin(1,1000,4d)

RUR gsortl(1,1000,4)

ROR prin(1,1000,d)

ERD

Page A-10

BASIC09 REFERENCE MARUAL

Sample Prograns

The following procedures demonstrate multiple-precision
arithmetic, in this case using five integers to represent
a twenty decimal digit number, with four fractional places.

PROCEDURE mpadd

REM a+b=>c:five_integer_number (T.F. Ritter)

PARAM a(5),b(5),c(5) :INTEGER

DIM i,carry:INTEGER

carry:=0

POR i=5 TO 1 STEP -1

c(i)s:=a(i)+b(i)+carry

IF c(i)>10000 THEN

c(i):=c(i)-10000

carry:=1

ELSE carry:=0

ERDIF

REXT i

PROCEDURE mpsub

PARAH a(5),b(5),c(5):IRTEGER

DIM i,borrow:INTEGER

borrow:=0

FOR i=5 TO 1 STEP -1

c(iY:=a(i)-b(i)-borrow

IP c(i)<0 THER

c(i):=c(i)+10000

borrow:=1

ELSE borrow:=

ERDIF

- FEXT i

PROCEDURE mprint

PARAM a(5):INRTEGER

DIM i:IRTEGER; s:STRING

FOR i=1 TO 5

IF i=5 THEN PRINT ".":

ERDIF

s:=STRS(a(i))

PRINT MIDS("0000"+s,LEN(s)+l,4);

REXT i

(continued on next page)

Page A-ll

BASIC09 REFERENCE MARUAL

Sample Programs

(multi-precision arithmetic, continued)

PROCEDURE mpinput

PARAM a(5): INTEGER

DIM n,i:IRTEGER

IRPUT "input multi-precision number' ",bs

n:=SUBSTR(".",bS)

IF n<>0 THER

. a(5) :=VAL(MIDS$ (b$+"0000" ,n+1,4))

b$:=LEFTS (b$,n~-1)

ELSE a(5):=

ENDIF

b$:="00000000000000000000"+b$

n:=1+4+LER(bS)

POR i=4 TO 1 STEP -1

n:=n-4

a(i) :=VAL(MIDS(bS,n,4))
NEXT i

PROCEDURE mptoreal
PARAM a(5):INTEGER; b:REAL

DIM i:INTEGER

b:=a (1)

FPOR i=2 TO 4

b:=b*10000

b:=b+a (i)

REXT i

b:=b+a(5)*,0001

Page A-12

BASICO09 REFPERENCE MANRNUAL

Sample Programs

PROCEDURE Patch

(* Program to examine and patch any byte of a disk file ¥)

(* Written by L. Crane *) '

DIM buffer(256) :BYTE

DIM path,offset,modloc:IRTEGER; loc:REAL

DIM rewrite:STRIRG

IRPUT "pathlist? ",rewrite

OPEN #path,rewrite:UPDATE

LOOP ’

IRPOT “sector number? ",rewrite

EXITIF rewrite="" THEN ERDEXIT

loc=VAL(rewrite)*256

SEEK #path,loc

GET s#path,buffer

RON bumpBuffer(loc,buffer)

LOOP

INPUT "change (sector offset)? ",rewrite

EXITIP rewrite="" THER

ROR DumpBuffer (loc,buffer)

ENDEXIT

EXITIP rewrite="S" OR rewrite="s" THEN ENDEXIT

offset=VAL(rewrite)+l

LOQP .

EXITIF offset>256 THER ERDEXIT

modloc=loc+offset~-1

PRINT USIRG "h4,' - ',h2",modloc,buffer(offset);

INPOT ":",rewrite

EXITIF rewrite="" THEN ENDEXIT

IFP rewrite<>" " THER
buffer (offset)=VAL(rewrite)

ERDIF

offset=o0ffset+l

ENDLOOP

ENDLOOP

INPUT "rewrite sector? ",rewrite

IF LEFTS (rewrite,1)="Y" OR LEFTS(rewrite,l)="y"* THER

SEEK #path,loc

POT ipath,buffer

ERDIP

ERDLOOP

CLOSE #path

BYE

(Continued on next page ¥*)

Page A-13

BASIC09 REFPERERCE MANUAL

Sample- Programs

PATCH - CONTINUED

PROCEDURE DumpBuffer

(* Called by PATCH *)

TYPE buffer=char(8) : INTEGER

PARAM loc:REAL; line(1l6) :buffer

DIM i,j:INTEGER

WHILE loc>65535. DO

loc=loc-65536.

ENDWHILE

POR j=1 TO 16

PRIRT USIRG "h4",PIX(IRT(loc))+(j-1)*16;

PRINT ":";

POR i=1 TO 8

PRIRT USING "X1,B4",line(j).char(i);

NEXT i ‘

RON printascii(line(j))

PRINT

NEXT j

PROCEDURE PrintASCII

TYPE buffer=char(16):BYTE

PARAM line:buffer

DIM ascii:STRIKG; nextchar:BYTE; i:IRTEGER

ascii=""

FOR i=1 TO 16

nextchar=line.char(i)
IF nextchar>127 THEN

nextchar=nextchar-128

ENDIF

IF nextchar<32 OR nextchar>125 THEN

ascii=ascii+" "

ELSE

ascii=ascii+CHRS (nextchar)

ERDIF '

NEXT i ,

PRIRT " "; ascii:

Page A-14

BASIC09 REFERENCE MANUAL

Sample Programs

PROCEDURE MakeProc

(* Generates an 0S-9 command file to apply a command *) »

(* Such as copy, del, etc., to all files in a directory *)

(* or directory system. Author: L. Crane ¥*)

DIM DirPath,ProcPath,i,j,k:INTEGER

DIM Copy2ll,CopyFile: BOOLEAN

DIM ProcName,FileName,Relnput, ReOutput,response STRINRG

DIM SrcD1r,DestD1r DlrLlne STRING[BO]

DIM Function,Options:STRING[60]

DIM ProcLine:STRING[160]

ProcName="CopyDir"

Function="Copy"”

Options="#32k"

REPEAT

PRINT "Proc name ("; ProcName; ")";

INRPUT response

IFP response<>"" THEN

ProcName=TRIMS (response)

ERDIF

OR ERROR GOTO 100

SEELL "del "+ProcName

100 ON ERROR

INPOT "Source Directory? ",SrcDir

SrcDir=TRIMS(SrcDhir)

OR ERROR GOTO 200

SEELL "del procmaker...dir”

200 ON ERROR

SHELL "dir "+SrcDir+" >procmaker...dir"

OPEN #DirPath,"procmaker...dir":READ

CREATE #ProcPath,ProcName:WRITE

PRINT "Function ("; Function; ")":

INPUT response

IP response<>"" THEN

Punction=TRIMS (response)

ERDIF

INPUT "Redirect Input? ",response

IF response="y" OR response="Y" THEN

ReInput="<" \ ELSE \Relnput=""

ERDIF

IRPUT "Redirect Output? ",response

IF response="y" OR response="Y" THEN

ReOutput=">" \ ELSE \ReOutput=""

ERDIF

PRIRT "Options ("; Options; ")";

IrP0T response

IF¥ response<>"" TEHER

Options=TRIMS (response)

ERDIF

Page A-15

INPOT

BASIC09 REFERERCE MANUAL

Sample Programs

MAREPROC- CONTINUED

"Destination Directory? ",DestDir

DestDir=TRIMS (DestDir)

WRITE

WRITE

#¢ProcPath,"t"

#ProcPath, "TMode .1 -pause"

READ #DirPath,DirLine

IRPOT "Use all files? ",response

CopyAll=response="y" OR response="Y"

WHILE ROT (EOF (¢DirPath)) DO

READ #DirPath,DirLine

i=LEN(TRIMS$ (DirLine))

IF i>0 THEN

3=1

REPEAT

k=3

WHILE j<=i ARD MID$(DirLine,j,1)<>" " DO

Jj=3+1
ENDWHILE

PileName=MIDS$(DirLine,k,j-k)

IF NOT(CopyAll) THEN

PRIRT "Use "; FileName;

IRPUT response

CopyFile=response="y" OR response="Y"
ERDIF

IF CopyAll OR CopyFile THEN

ProcLine=Function+" ®"+Relnput+SrcDir+"/"+FileName

IF DestDir<>"" THEN

ProclLine=ProcLine+" "+ReOutput+DestDir

+"/"+FileName

ERDIF

ProclLine=ProcLine+" "+Options

WRITE &#ProcPath,ProclLine

ERDIF '

WHILE j<i AND MID$(DirLine,j,1l)=" " DO

j=J+1
ERDWEILE

OHTIL j>=i

ERDIF

ERDWHILE

WRITE

WRITE

$ProcPath, "TMode .l pause"

#ProcPath,"Dir e "+SrcDir

IF DestDir<>"" THER

WRITE #ProcPath,"Dir e "+DestDir

ERDIP

CLOSE

CLOSE

SHLLL

PRIRT

INPUT

$DirPath

$ProcPath

*del procmaker...dir"

"Another ? ",response

UETIL response<>"Y" AND response<>"y"

Page A-16

BASIC09 REFERENCE MANUAL

Sanple Programs-

IF response<>"B"TM ANRD response<>"b' THEN

BYE

ERDIP
kkkkdkhkhkhkdkhhkhkhkdkk

* INKEY - a subroutine for BASIC09 by Robert Doggett

* Called by: RUN INKEY(Strvar)

* RUN INKEY(Path,StrVar)

* INKEY determines if a key has been typed on the given path

* (Standard Input if not specified), and if so, returns the next

* character in the String Variable. 1If no key has been typed, the

* null string is returned. If a path is specified, it must be

* either type BYTE or INTEGER.

0021 TYPE set SBRTN+0OBJCT

0081 REVS set REENT+1

0000 B87CDOOSE mod InKeyEnd, InKeyNam, TYPE,REVS

, InKeyEnt,0

000D 496E6B65 InKeyNam fcs "Inkey"
D 0000 org 0 Parameters

D 0000 Return rmb 2 Return addr of caller
D 0002 PCount rmb 2 Num of params following
D 0004 Paraml rmb 2 lst param addr

D 0006 Lengthl rmb 2 size

D 0008 Param2 rmb 2 2nd param addr

D 000A Length2 rmb 2 size

0012 3064 InReyEnt leax Paraml,S

0014 EC62 ldd PCount, S Get parameter count

0016 10830001 cmpd #1 just one parameter?

00la 2717 beg InKey20 ..Yes; default path A=0
" 001C 10830002 cmpd #2 Are there two params?
0020 2635 bne ParamErr No, abort

0022 ECF804 ldd [Paraml,S] Get path number
0025 AE66 ldx Lengthl,S

0027 301F leax -1,X byte variable?

0029 2706 beg InKeylO ..Yes; (A)=Path number
002B 301F leax -1,X Integer?

002D 2628 ' bne: ParamErr ..No; abort

002F 1F98 tfr B,A

0031 3068 InReyl0 leax Param2,S

0033 EEOQ2 InKey20 1ldu 2,X A length of string

0035 AE84 léax 0,X addr of string
0037 C6FF 1db §SFF

0039 E784 stb 0,X Initialize to null str

003B 11830002 cmpu #2 at least two-byte str?

003F 2502 blo InKey30 . .No
0041 E701 stb 1,X put str terminator
0043 C601 InRKey30 1ldb #SS.Ready

0045 103F8D 0s9 ISGetStt is there an data ready?
0048 2508 becs InKeyS90 ..No; exit

Page A-17

004A

004E

0051

0052

0054

0056

0057

0059

005a

005B

005E

108E0001

103F89

39

ClFé6

2603

39

C638

43

39

1A6916

BASIC09 REFERENCE MANUAL

Sample Programs

InKey90

ParamErr

InRKeyErr

InKeyEnd

ldy

089

rts

cmpb

bne

rts

1db

coma

rts

emod

equ

£1

ISRead Read one byte
return error status

$ESNotRdy
InKeyErr

(carry clear)

#ESParam Parameter Error

Page A-18

BYE

CHD

BREAK

CONT

ABS

ACS

ADDR

AND

ASC

ASN

ATN

BASE

BOOLEAN

BYE

BYTE

CEAIN

CED

CERS

CEX

CLOSE

cos

CREATE

DATA

DATES

DEG

DELET

DIM

CHX

DIR

{cr>

<line #>

{space>

c

DEG

DIR

END

DIR

DO

ELSE

END

ENDEXIT

ENDIF

ENDLOOP

ENDWHILE

EQOF

ERR

ERROR

EXEC

EXITIF

EXP

FALSE

FIX

FLOAT

FOR

GET

GOSUB

GOTO

IF

INPUT

BASIC09 REFERENCE MANUAL

Appendix B - Quick Reference

SYSTEM MODE COMMANDS

EDIT LOAD

KILL MEM

LIST PACK

EDIT MODE COMMANDS

c* l*

d q
a* r

1

DEBUOG MODE COMMARDS

LET Q

LIST ‘ RAD

PRINT STATE

PROGRAM RESERVED WORDS

INT PEER

INTEGER PI

KILL POKE

LAND POS

LEFTS PRINT

LEN PROCEDURE

LET _ PUT

LNOT RAD

LOG READ

LOG10 REAL

LOOP REM

LOR REPEAT

LXOR RESTORE

MIDS RETURN

MOD RIGHTS

NEXT RND

NOT RUN

ON ~ SEER

OPEN SGN

OR SEELL

PARAM SIN

PAUSE SIZE

SQ

Page B-1

RENAME

RUN

SAVE

STEP

TROF

TRON

F

SQR

SQRT

STEP

STOP

STRS$
STRING

SUBSTR

TAB

TAN

THEN

TO

TRIMS

TROFF

TRON

TRUE

TYPE

UNTIL

UPDATE

USING

VAL

WHILE

WRITE

XOR

BASIC09 REFERENCE MARUAL

Appendix B - Quick Reference

BASIC09 STATEMENTS

BASE O ELSE GOTO OPEN RETURN

BASE 1 END IF/THEN PARAM RUN

BYE ENDEXIT INPUT PAUSE SEEK

CHAIN. ENDIF RILL POKE SHELL

CHD ENDLOOP LET PRINT STOP

CEX ENDWHILE LOOP POT TROFF

CLOSE ERROR NEXT RAD TRON

CREATE EXITIF/THEN ON ERROR GOTO READ TYPE

DATA FOR/TO/STEP ON/GOSUB REM UNTIL

DEG GET ON/GOTO REPEAT WEILE/DO

DELETE GOSUB RESTORE WRITE

DIM

TRARSCEDERTAL FUNCTIONS

ACS (x) COoS (x) LOGl0 (x) SIN (x)

ASN (x) EXP (x) PI TAN (Xx)

ATN (x) LOG (x)

ROMERIC FUNCTIORS

ABS (x) LAND {(m,n) MOD (m,n) SQ (x)

PIX (x) LNOT (m,n) RND (x) SQR (x)
FLOAT (m) LOR ‘m,n) SGN (x) SORT (x)

INT (x) LXOR {(m,n)

STRING PUNCTIONS

ASC (char$) LEFTS (str$,m) RIGHTS (strS$) TRIMS (str$)
CHRS (m) LEN (str$) STRS (X) VAL(strS$)

DATES MIDS (str$,m,n) SUBSTR (stl$,st2$)

MISCELLANEOUS PURCTIONS

ADDR (var) FALSE. POS TAB (m)

EOF (spath) PEERK (addr) SIZE (var) _TRUE

ERR

OPERATOR PRECEDERCE

highest -> NOT -(neg)
-~ * %k

* /
+ -

> < <O = >= <=

AND

lowest -> OR XOR

Page B-2

40

41

42

43

45

46

47

48

49

BASICO0S REFERENCE MANUAL

Appendix C - Error Codes

BASIC09 ERROR CODES

Unrecognized Symbol

Excessive Verbage (too many keywords or symbols)

Illegal Statement Construction

I-code Overflow (need more workspace memory)

Illegal

Illegal

Illeqal

Illegal

Illegal

Illegal

Illegal

Illeqgal

Illegal

Illegal

Illegal

Channel Reference (bad path number given)

Mode (Read/Write/Update/Dir only)

Number

Prefix

Operand

Operator

Record Field Name

Dimension

Literal

Relational

Type Suffix

Too-Large Dimension

Too-Large Line Number

Missing

Missing

Missing

Missing

Missing

Assignment Statement

Path Number

Comma

Dimension

DO Statement

Memory Full (need more workspace memory)

Missing

Missing

Missing

Missing

Missing

Missing

Missing

Missing

GOTO

Left Parenthesis

Line Reference

Operand

Right Parenthesis

THEN statement

TO

vVariable Reference

No Ending Quote

Too Many Subscripts

Unknown Procedure

Multiply-Defined Procedure

Divide by Zero

Operand Type Mismatch

String Stack Overflow

Unimplemented Routine

Undefined Variable

BASIC09 REFERERCE MARUAL

Appendix C - Error Codes

50 - Floating Overflow

51 - Line with Compiler Error

52 - Value out of Range for Destination

53 - Subroutine Stack Overflow

54 - Subroutine Stack Underflow

55 - Subscript out of Range

56 - Parameter Error

57 - System Stack Overflow

58 - I/0 Type Mismatch

59 - I/0 Numeric Input Format Bad

60 - I/0 Conversion: Number out of Range

61 - Illegal Input Format

62 - I/0 Format Repeat Error

63 - I/0 Format Syntax Error

64 - Illegal Path Number .

65 - Wrong Number of Subscripts

66 - Non-Record-Type Operand

67 - Illegal Argument

68 - Illegal Control Structure

69 - Unmatched Control Structure

70 = Illegal POR Variable

71 - Illegal Expression Type

72 - Illegal Declarative Statement

73 - Array Size Overflow

74 - Undefined Line Number

75 - Multiply-Defined Line Number

76 - Multiply-Defined Variable

77 - Illegal Input Variable

78 - Seek Out of Range

79 - Missing Data Statement

80 - Print Buffer Overflow

Error codes above 80 are those used by 0S-9 or other external programs.

Consult the "0S-9 User's GuideTM for a 1list of error codes and

explanations.

Page C-2

BASIC09 REFERERCE MANUAL

Appendix D - Runb

Runb is the BASICO09 run-time package. It is similar to BASICO09 with

the following exceptions: Runb is about half the size of BASICOS and no
file editing or debugging can be done. The main purpose of Runb is to

save space and to execute packed modules. It should be noted that Runb

will only execute packed modules. Another feature of Runb is that

CONTROL-C and CONTROL-Q can be trapped by ON ERROR GOTO where BASICOS

can't.

- When the name of a packed module is typed at the 0S-9 prompt, Shell

will determine that the module is packed BASIC09 I-code. Shell then

loads and forks Runb, and Runb will 1link to and execute the named

program. To run packed modules in this way, Runb must be in the commands

directory.

Packed modules can be executed without Runb, but BASICO09 will have

to be used and more space will be required.

Page D-1

$
Abs

Acs

Addr

And

Array

Asc

Asn

Atn

Base

Boolean

Break

Bye
Byte

Chain

Chd

Chr$

Chx

Close

Constants

Cont

Cos

Create

Date$
Debug Mode

Deg

Delete

Dim

Dir

Do

Edit

Else

End

Endexit

Endif

Endloop

Endwhile

Eof

Err

Error

Exec

Exitif

Exp

Expressions

False

LITOUTIBI o

~ (Ve1 bt (Ve

i

WHMDLWAWHMNDWDUHBABUVITODUTW- \D | [[os

?1 NWs

ol (=}

o ~

D! o \O

LILLL - A(e]| [~J

trtot)11t woDOOOWHPYWOOROWOOUOYOAANOTWODANDHHONNDHHOANNHWOWODWPO~ononow| N0|U0B00WbtOVWN

BASIC09 REFERENRCE MARUAL

Files

Fix

Float

For

Formats

Functions

Get

Gosub

Goto

If

Input

Int

Integer

Kill

Kill

‘Land

Left$

Len

Let

List

List

Lnot

Load

Log

Logl0

Loop

Lxor

Mem

MidsS

Mod

Next

Not

On Error

On Gosub

On Goto

Open

-Operators

Or

Pack

Param

Parameters

Paths

Pause

Peek

Pi

Index

10-1

t1Totrittttotrvtetyeteet ooNNDNhOOH~-~--
wWOW{11(=)}e

ODWYWHOUWLWOHWLWOOWODONODWORRRNODANNODODWOWN
!

DU]NN|RNUITUIARSIO00WOWUIOO
Page E-1

Poke

Pos

Print

Put

Q
Rad

Read

Real

Rem

Rename

Repeat

Restore

Return

Right$

Rnd

Run

Save

Seek

Sgn

Shell

Sin

Size

5q
Sqr

Sqgrt

State

Step

Stop

Str$

String

Substr

Tab

Tan

Trim$

Troff

Tron

True

Type
Until

Update

Using

Val

While

Write

Xor

9-3

8-5 '

6-3:;10-4

10-13

6-3

6-3,9-19

10-12,10-16

7-3

9-20

3-7

9-7

10-16

8-S

8-6

8-4

3-7,5-1,9-12

2-8'3-8

10-10

8-5

9-16

8-4

8-5,10-13

8-5

8-4

8-4

6-4

6-4,9-5

5-18

8-6

7-4

8-5

10-4

8-4

8-6

6-4,9‘19

6-4,9-19

8-6

9-25

9-7

10-6

10-17

8-5

9-6

10-11

8-2

